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An energy principle for hydromagnetic stability problen~s 

BYI. B. BERNSTEIN,E. A. FRIEMAN, M. D. KRUSKALAND R. M. KULSRUD 

Project Matterh,orn, Princeton University 

(Commur~icatedby 8. Chandrasekhar, IilR.8.-Received 18 April 1967-
Revised 26 August 1957) 

The problem of the stability of static, highly conducting, fully ionized plasmas is investigated 
by means of an energy principle developed from one introduced by Lundquist. The derivation 
of the principle and the conditions under which it  applies are given. The method is applied to 
find complete stability criteria for two types of equilibrium situations. The f i s t  concerns 
plasmas which are completely separated from the magnetic field by an interface. The second 
is the general axisymmetric system. 

The investigation of hydromagnetic systems and their stability is of interest in 
such varied fields as the study of sunspots, interstellar matter, terrestrial magnetism, 
auroras and gas discharges. An excellent summary and bibliography of these 
applications has been given by Elsasser ( I955, I 956). The stability of hydromagnetic 
systems has been extensively investigated in a fundamental series of papers by 
Chandrasekhar (1952 to 1956). 

The present work is concerned with those hydromagnetic equilibria in which the 
fluid velocity at  each point is assumed to vanish. It is divided into two parts. The 
first is a development of an energy principle, originally stated by Lundquist ( I95I ,  

1952), for investigating the stability of such systems. The second part consists of 
the application of this principle to obtain a number of specific results for such 
systems. 

The 'normal mode 'technique is the usual method for the investigation of stability 
in many systems, mechanical, electrical, etc. It consists of solving the linearized 
equations of motion for small perturbations about an equilibrium state. The system 
is said to be unstable if any solution increases indefinitely in time; if no such solution 
exists, the system is stable. 

The energy principle technique, on the other hand, depends upon a variational 
formulation of the equations of motion. It was first used by Rayleigh (1877) in the 
calculation of the frequencies of vibrating systems. I ts  advantage lies in the fact 
that if one seeks solely to determine stability, and not rates of growth or oscillation 
frequencies, it is necessary only to discover whether there is any perturbation which 
decreases the potential energy from its equilibrium value. This makes practical 
the stability analysis of much more complicated equilibria than the normal mode 
method. 

I n  $ 2  are presented the basic equations for a plasma and the conditions under 
which they are valid. These equations are then linearized in the Lagrangian repre- 
sentation. I n  $ 3 ,  the energy principle is stated and derived from the normal mode 
equations for the system. The relation between the energy principle and Rayleigh's 
principle (Rayleigh I877) is discussed. 
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In  $4, some convenient methods for applying the energy principle to general 
problems are described. In  § 5, the problem of the stability of a fluid in which the 
magnetic field is zero and which is surrounded by a vacuum magnetic field is solved. 

Section 6 treats the stability of a general axisymmetrio system. The problem is 
reduced essentially to the solution of an ordinary second-order eigenvalue equation. 
In  certain limiting situations the problem is solved completely. 

Consider a plasma of electrons and of one kind of positive ion which is governed 
by the following system of equations: 

at +div (pv) 0,@ = (2.2) 

Let E be the electric field, B the magnetic field, j the electric current density, 
p the mass density, H the ion mass, p the pressure, q3 the external potential energy 
per unit mass, y the ratio of specific heats, e the magnitude of the electronic charge 
and v the fluid velocity. The equations are written in rationalized Gaussian units 
with c = 1. 

The above equations apply if the following conditions are satisfied: (i)Quadratic 
terms in v and j are negligible. Physically, this is equivalent to the requirement that 
the macroscopic speed v is small compared to sound speed c, = (.jpjp)* or to hydro- 
magnetic speed c, = BIJp. (ii) The system is locally electrically quasi-neutral. 
This occurs if the Debye shielding distance AD = (kT,/ne2)h is sniall compared to 
every characteristic dimension L of the system. (iii) The ratio of the electron mass, 
m to the ion mass, is negligible compared to unity. (iv) The matter stress tensor 
is isotropic. This occurs if there are many collisions during a characteristic time, t,. 
The effect of relaxing the requirement of isotropy of the stress tensor is considered 
in 5 3. (v) The displacement current is negligible. This holds if c, is small compared 
to the speed of light. (vi) Heat flow by conduction, along the lines of force as well 
as across the lines, is negligible. This implies the adiabatic law (2.4). It is shown in 
5 3 how this law must be modified if conditions (iv) and (vii) are not satisfied. 
(vii) Ohm's law in the form of equation (2.3) is valid. 

Spitzer (1956)gives the complete generalized Ohm's law which may be written 
in the form 
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The electron inertia term (mlne2) ajjat is negligible when (tC)-lis small compared 
to the electron plasma frequency w, = (ne2/m)B.The ion inertia term ( M j e )  avjat 
is negligible when (t,)-I is small compared to the ion Larmor frequency eBjlkl. The 
electrical resistance term yj  is negligible when the time characteristic of relative 
diffusion of matter and magnetic flux is long compared to t,. The terms involving 
grad q5 and gradpi are negligible when aic,jLv < 1, where ai is the ion Larmor 
radius. Spitzer has pointed out that this criterion is not satisfied in general for fully 
ionized plasmas. In  particular, for equilibrium states in which v is zero, the criterion 
fails. The effect of keeping these terms is discussed in 3 where it is shown that the 
stability criteria are not affected by their inclusion. 

The set of equations above implies relations between quantities on adjacent sides 
of an interface, either interior to the fluid or between fluid and vacuum. Denote by 
n the unit normal to the interface, by K the surface current density, and by (X) the 
increment in any quantity X across the boundary in the direction n. For a fluid- 
fluid interface the relations are 

(p-I-i B 2 )  = 0, (2.5) 
n . ( v )  = 0 ,  (2.9) 

n x ( E )  = n . v(B), (2.10) 

n .( B )  = 0, (2.1 1 )  

n x ( B )  = K .  (2.12) 

For a fluid-vacuum interface equation (2.9) is meaningless, but the remaining 
relations apply with v taken to be the fluid velocity. 

The region of interest can often be considered surrounded by a rigid, perfectly 
conducting wall. At guch a boundary the appropriate conditions are 

A further condition which must be satisfied a t  any interface carrying a sheet 
current, but no sheet mass, is that the lines of force of the magnetic field lie in the 
interface. This arises from the fact that refraction of the lines of force would give 
rise to infinite accelerations in the surface due to the unbalanced tangential forces. 
Throughout this paper, only surfaces of discontinuity will be considered a t  which 
the condition n.B = O is satisfied. This is the boundary condition of interest, for 
example, for a confined plasma in which gravitational effects are negligible. 

It can be slzown that the system of equations above possess an energy integral 

where the integration is extended over the whole domain, fluid and vacuum. 
It is convenient in later exhibiting the energy principle for the linearized form 

of the above equations to adopt a Lagrangian description of the fluid motion. 
Accordingly, all quantities are now considered to be functions of r,, the initial 

2 - 2  
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location of a fluid element, and of t ,  the time. Let the displacement vector g(r,, t )  
be determined by r = r0+5,  (2.17) 

where r is the location of the fluid element a t  time t .  Clearly E(r,, 0) is zero. Define 
grad, to be the gradient operator with respect to r,. The usual chain rule of diEer- 
entiation yields grad = grad r, .grad,. (2.18) 

To first order in g equation (2.18) becomes 

grad = grad, - (grad, 5) .  grad,. (2.19) 

Consider systems which are passing through a configuration of static equilibrium 
a t  time zero. The equilibrium equations are 

grad,^, -j, x B, +p,grad, 95, = 0, (2.20) 

curl B, = j,, (2.21) 

div,B, = 0. (2-22) 

The equations determining the various perturbed field quantities a t  r to first 
order in 5 are determined by linearizing (2.1) to (2.6). There results on combining 
(2.3) and (2.5) and integrating in time, 

B = B,+Q+~.grad,B, ,  (2.23) 

where Q = curl, (g x B,). (2.24) 

Equations (2.6), (2.2), (2.4) and a Taylor expansion of the external potential 
yield, respectively, 

j = j, - [(grad, 5).grad,] x B, +curl,Q +curl, [(s.grad,) B,], (2.25) 

P = Po-Podivok (2.26) 

P = Po -?/Podiva 5, (2.27) 

a = $5, +t .  grad, $0. (2.28) 

'The above equatioiis are the first-01-der Lagrangian couiiterparts of (2.2) to (2.6). 
Note that they involve but not t ,where a dot indicates differentiation with respect 
to time. It can be shown that this property of depending on g but not holds for 
the expression of grad, H3, j, p,p and Q to ali higher orders in 5. Finally: the equation 
of motion (2.1) takes the form 

PO%= F(5), (2.29) 
where 

F(5) = grad, [YP, div, + (5.grad,) pol+jo 
x Q -B, x curl, Q t [div, (p, 5)] grad, $5,. (2.30) 

Note that F also depends only on 5 and not on c. 
Note that (2.29) with appropriate initial and boundary conditions determines g. 

Equations (2.23) to (2.28) then determines the perturbed field quantities. 
The boundary conditions at  a11 interface between a plasma and a vacuum are 

given by transcribing (2.8) to (2.12) to first order g. Introduce tile first-order 
vacuum vector potential, L4,where 

h A AaA
E=-- -+E,  and B=cu r lA+Bo ,  (2.31)

at 
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and vacuum quantities are distinguished when necessary by a circumflex. The gauge 
has been chosen so that the scalar potential vanishes. Then from (2.8) 

-p0div, 5+I%,. (0+ [5 .grado] B,) = 8,.(curlA +[5.pad ]  3,). (2.32) 

It follows from (2.11), (2.10) and (2.3) that 
A 

nox A = - (no.5)B,. (2.33) 

Of course, A must satisfy the equation 

curl (curl A) = 0 (2.34) 
in the vacuum. 

Equations (2.33) and (2.34) serve to determine curl, A in terms of 5, so that (2.32) 
is the only constraint on 5. The linearized counterpart of (2.13) which holds at  a 
rigid, perfectly conducting wall bounding the vacuum is 

a x A = 0 .  (2.35) 

At such a wall bounding a fluid, the condition is 

n.5 = 0. (2.36) 

3. THEENERGY PRINCIPLE 

On the basis of § 2, it is possible in principle to follow in time any small motion 
about an equilibrium state in which the fluid velocity is zero. The central problem 
of this paper is to determine for a given equilibrium configuration whether such a 
small motion grows in time. If we confine ourselves just to the question of the 
determination of the stability of a system and do not inquire into details of the 
motion, the problem may be reduced to examining the sign of the change in the 
potential energy as a functional of 5. It will be shown in this section that 
the system is unstable if, and only if, there exists some displacement 5 whioh 
makes this change in energy negative. 

The demonstration demands that F ((2.30)) be a self-adjoint operator. That is, 
for any two vector fields 5 and q satisfying (2.32) 

The self-adjointness property of F could be proved directly, but will be shown more 
simply to follow from the existence of an energy integral for the linearized system in 
which terms in the form of a product of and do not appear. Such an energy in- 
tegral for the linearized system is guaranteed in the case v = 0 by the energy 
integral, (2.16), for the exact equations. I n  fact, the kinetic energy term for the 
linearized system is just 

while, when the potential energy terms are expanded in 5,the change in the poten- 
tial energy is a quadratic form SW(5, 5) whioh does not involve t because of the 
remark following (2.28). Hence, 

K(E79+6W(5, 5) (3.3) 
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is constant. One obtains from the equation of motion (2.29) 

Since < satisfies the same boundary condition as E, we can choose < to be equal to 
any arbitrary displacement q. By (3.4) 

and F is self-adjoint. Further the potential energy is 

as seen by replacing $ by 5 itself in (3.4). 
Since the time does not appear explicitly in (2.29), one seeks normal mode 

solutions of the form 
&(IT,,,t )  = eiw)if.5%(ro) (3.7) 

The corresponding eigenvalue equation is 

where 5, satisfies the boundary condition (2.32). Since F is self-adjoint the eigen- 
functions 5, can be chosen to satisfy the orthonormality condition 

It is physically reasonable to assume that these eigenfunctions form a complete 
set for any functions which satisfy the boundary condition (2.32). (The unimportant 
special cases involving degeneracy of eigenfunctions will be consistently ignored.) 
It further follows from the fact that F is self-adjoint that w2, is real and thus the 
phenomenon of 'overstability ' cannot occur. 

Any eigenmode with positive w2, corresponds to a stable oscillation. A negative 
~ 2 ,corresponds to instability. Thus, in virtue of the assumed completeness property, 
the necessary and sufficient condition for instability is the existence of a negative w i .  

On physical grounds one expects that if S W can be made negative then the system 
is unstable and therefore, there exists a t  least one negative w i .  To show this, let 
5 be a displacement which satisfies the boundary condition (2.32) and for which 
SW < 0. By the assumed completeness property one can write 

S = %5,, 
and from (3.6), (3.8) and (3.9) 

r 

Thus SW can be made negative if and only if there exists at  least one negative 
02,. Therefore, the determination of the stability of a system is reduced to an 
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examination of the sign of SW. Since the displacements E, which may be employed 
in SW are subject to (2.32), the energy principle as it stands is of limited utility. 
It is possible to derive an extended energy principle whioh dispenses with this 
constraint. 

To this end one rewrites SW as the sum of three terms, a volume integral SW, 
extended over the fluid domain, a surface integral extended over the fluid- 
vacuum interface and a volume integral SW, extended over the vacuum region. 
There results from (2-30) and (3.6) after integration by parts, suppression of the 
subscript zero and use of the condition n .  B = 0, 

where d ~ { l Q ~ - j . Q x E , + y p ( d i v 5 ) ~  

and the integral is extended, of course, over the initial volume of the fluid. Note 
that the continuity of the equilibrium value of (p+-&I B 1 2 )  across the boundary 
implies the continuity of n x grad ( p  ++/ B j 2 ) .  This allows us with the help of 
equation (2.32) to rewrite the surface term in (3.12) as 

= ~ ~ d c T ( - ( n . S ) a n . g r n d ( p +1 B 12)-(n.E,)21.grad(+/2 B l a )  
-(fi.E,)8.curlA). (3.14) 

Further, employing (2.33) we obtain 

=/d?div (A x curl A) 

=Sd?{l curl A A/ 2 -A. curl (curl A)). (3-15 )  

Thus, in virtue of (2.34) the final form of SW is 

SW = SW,+ SWs+6Wv, 
where SW, is given by (3-13), 

SW, = i J d i  1 curlA l 2  

and 

With this form for 6 (3-16), the energy principle will now be extended to dis- 
placements E, which do not satisfy the constraint equation (2.32). It will be shown 
that if there exist E, and A which satisfy (2.33) and (2.35), but not necessarily (2.32) 
and (2.34), and which make SW as given by (3.16) negative, then there is a % and 
and a satisfying (2-32) to (2-35) which make SW negative. Note that for the 
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unrestricted g and A, SW as given by (3.6) may differ from that given by (3.16) by 
the addition of terms which represent the work done a t  the surface against the 
unbalanced total pressure (p  + & / B 12). Thus the form of SW given by (3.16) must 
be used for the extended principle. 

In  order to find ih observe first that the Euler equation resulting from the mini- 
mization of SWT, ((3-17) with the constraint conditions (233) and (2.35)) is curl2A = 0 
((2.34)). Therefore, if A does not satisfy this equation, A can be chosen to satisfy 
it and certainly decrease S W, thereby. 

To complete the proof it remains to find g. This is accomplished by modifying g 
by an infinitesimal amount. Let c: be a parameter of smallness and r )  a finite vector 
in the gradp direction which falls to zero in a distance s as one moves normally 
away from the interface into the fluid. Write .$ as 

& =g+€Y). 
To lowest order in s 

since q changes rapidly in the normal direction. Thus r) can be chosen so that 
satisfies (2.32). Furthermore 

since the i~itegrands of SW{g, €1)and SW{sq, sr))are bounded and are different from 
zero only in a shell of thickness E .  Therefore, if SW{g, g) is negative e can be chosen 
so small that &WE,t )  is negative. It is clear that any g and A which do satisfy the 
conditions (2.32) and (2.34) can be considered to be members of the unrestricted 
class of E, and A. Thus, a necessary and sufficient condition for instability is that one 
can find a and A which satisfy only (2.33) at  a fluid-vacuum interface and (2.35) 
or (2.36) a t  a rigid, perfectly conducting boundary and make the potential energy, 
(3.16), negative. This completes the proof of the extended energy principle. 

The above considerations are closely connected with Rayleigh's principle (Ray- 
leigh 1877). I n  fact, it  can be shown that the Euler equation of the variational 
principle 

is just the eigenvalue equation (3.8). (Note that S represents a variation due to a 
g deformation, while A is used to represent other variations.) If the form of SW is 
given by (3.6) then the variation in g, AE,, must satisfy (2.32). If, however, (3.16) 
is used for SW, then the variations AA and Ag are subject only to equation (2.33), 
and (2.32) follows as a natural boundary condition. 

The utility of Rayleigh's principle lies in the fact that when the ratio (3.22) 
possesses a minimum, it can be used to estimate oscillation frequencies or rates of 
growth of instability. Por example, those displacements which make SW negative 
can be used as trial functions in the variational principle (3.22). Even when w2 is 
not bounded from below as is the case in certain hydromagnetic instabilities 
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(Kruskal & Schwarzschild 1954)Rayleigh's principle can still be employed to yield 
information on the structure and time constant of the eigenmodes. 

I n  practice, the examination of the sign of 6W in the energy principle is carried 
out in many cases by choosing a positive definite normalization condition on 5 and 
minimizing 6W. This is formally similar to (3.22). The great advantage of the 
energy principle over both the normal mode technique and its equivalent, Ray- 
leigh's principle, lies in the fact that one is not restricted to the normalization con- 
dition K(5, $) = 1,but can choose any convenient condition. Of course, in changing 
the normalization condition one loses knowledge of the exact eigenfrequencies 
but often gains the advantages of great analytical simplification. I n  $6, there 
appear examples of alternative normalization conditions. 

(a)Extension of the energy principle to more gene~nl cases 

The description of a plasma given above may be inadequate if any of the con- 
ditions of validity (i) to (vii) of § 2 do not hold. I n  many cases of interest condition 
(iv), that the stress tensor be isotropic, and part of condition (vii), that the ion 
pressure gradient term and the gravitational potential term in Ohm's law be 
negligible, are not satisfied. In  this section the formalism is generalized f,o include 
situations in which these conditions are no longer valid. 

The new governing equations will be stated and 6W derived. It will be found 
that the inclusion of the new terms in Ohm's law does not lead to a change in the 
formula for 6W, when the stress tensor is isotropic. 

I n  these more general cases, the equation of motion (2.1) is 

and the valid Ohm's law, replacing (2.3) is 

t* 


where? is the total material stress tensor and pi is the ion partial stress tensor. 
To derive an equation of state for the case of an anisotropic stress tensor, coilsider 

situations where the magnetic field is so strong that its change over an ion Larmor 
t--f 


radius is small. Then the matter stress tensor p is approximately diagonal in a local 
Cartesian co-ordinate system one of whose axes is directed along B, and is invariant 

C, 

under rotations about B. That is, if e denotes a unit vector parallel to I3 and 1 
the unit dyadic, <--f t-) 

p = pl(l -ee)+pllee. (3.25) 

The internal energy per unit volume is given by one-half the trace of the stress 
tensor. Thus, the internal energy per unit mass can be written 

where 

and 
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If collisions are infrequent, u,, and u, are independent. Assume that there is no 
flow of heat and consider an element of mass contained in the element of volume 
d~ = dLdX, where &5 is an element of length along B and dS  an element of area 
perpendicular to B. I n  a displacement 5 the associated fractional change ill length 
along a line of force is easily seen to be 

= (e.grad g) . e .  (3.29) 

The corresponding fractional change in area perpendicular to B is readily computed 
by observing that i t  follows from d~ = dLdX and Sdrldr = div g that 

whence 

Thus if there is no heat flow in the course of the displacement, that is, if the dis- 
placement is locally adiabatic, one can write 

S(u,,pdr)= S(+pI1dr)= -p,,dXSdL, (3.32) 
S(u ,pd~)= = --pidLSdS.S(p L d ~ )  (3.33) 

The terms on the right above represent the external work done. From these expres- 
sions follow imlnediately the equations of state. 

%= -div5-2(e.gradg).e,
2311 (3.34) 

= -2div5+(e.gradg).e.)
131. 

These equations agree with those found by Chew, Goldberger & Low (1956) by an 
analysis of the Boltzmann equation, employing somewhat different assumptions. 

I n  order to derive the expressioiz for the change in B due t.0 a displacement 5, 
consider motions about a configuration of static equilibrium. For clarity the sub- 
script zero is reintroduced to indicate equilibrium quantities. The equilibrium 
elect.ric field is Af 1 c r  

E, = grad, q5, + -div, R,,.
v o  

Since E, is an electrostatic field its curl must vanish which implies that the right- 
hand side of (3.35) is the gradient of a scalar. 

Assume that (3.34)holds with p,, and p, replaced by pi ,  and pi,, and note that in 
order of magnitude p,,,-pi,-plcc/iV. Then the change in magnitude of 

in a displacement from equilibrium, which is not necessarily small, is approxi- 
mately 

where L is a characteristic length over which the various physical quantities change. 
The correspondilig cllange in the magnitude of v x B is 

wSB, (3.37) 
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where l / w  is a characteristic t.ime of the motion. The ratio of formula (3.36) to 
formula (3.37) is 

where wci = e.B/M is t,he ion cyclotron frequency. For many systems of int,erest 
u2L2-kT, /M,while w w& by condit,ion (vii) of $2. Thus the rat,io (3.38) is much less 
than unity and t,l~e ion st,ress tensor has negligible effect in determining the change 
in E from its equilibrium value, although it may play an important role in deter- 
mining E,. 

The change in B, however, is det,ermined from curl E = -aB/at. Thus it follows 
from the Ohm's law equation (3.24), neglecting t,he contribution of t,he t,erm in 

divsi  on the basis of t,he preceding considerat,ions, that 

aB 
- curl (v x B).

at 

Equation (3.39), however, is precisely what one obtains on combining t,he 
induct,ion equat,ion (2.5) wit,h t,he Ohm's law of the preceding work, (2.3). Thus, in 
those cases where the stress t,ensor is isotropic, the linearized equations governing 
t,he motion are unchanged by the inclusion in the Ohm's law of the two additional 
terms. Therefore, F{X) and S W are also unchanged and the energy principle holds 
in the form previously derived. 

If the stress t,ensor is given by (3.25) and (3.34) there exists an  energy int,egral 

while (3.34) (3.39), and the law of conservation of mass f i  = -pdivv permit one 

to express 5,B and p in terms of their initial values and g. The expressions do not 
involve $. Thus, since the system is conservative there must exist a potential energy 
6W quadratic in E, which implies as before that the associated first order force F{g) 
is self-adjoint. The energy principle is, therefore, still valid and stability can be 
determined by examining the sign of the new SW which is given by 

+ e . ~ ( P I I -PL) n.[(e. grad) 5- grad) el) 

+;, 'S dr{1Q~2-j.Q~~+$pL(div~)2+(div~)(~.grad)p, 

+ +~~[d ivg -3q l~+qd iv [g (~ I l  g.grad$- P L ) I - [ ~ ~ ~ ( P ~ ) I  

- ( P I -PI)[e.  (grad 5). (grad5).e -5 .  (grad e) . (grad9. 
-4q2+ e . (gradg) . (e .grad E,)-g . (grad e) . (e . grad g)]), (3.41) 

where q = (e .grad E,) . e and the subscript zero distinguishing equilibrium quantities 
has been suppressed. 
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The boundary condition on A remains as before, (2.33). The jump condition on 
the pressure, (2.8),is replaced by 

(pL++ / B 12) = 0. (3.42) 

In some cases collisions are sufficiently frequent to yield an isotropic stress 
tensor for the equilibrium, but the collision time is much greater than an oscillation 
or instability time. Under such circumstances the stress tensor will not remain 
isotropic in the course of a motion but will be determined by (3.34),withp, =p, =p. 
Expression (3.41) for 6W then differs by a positive definite term from the corre- 
sponding equation (3.13) for the case where the stress tensor remains isotropic in 
the course of a motion with y = %.Hence, the equilibrium is at  least as stable. 

(b)  Conzparison theorems 

Tliere are various comparison theorems which follow from the energy principle. 
Two examples will now be given. 

Consider a system (I) ,a part of which is a vacuum region (a).Compare this with 
a system (11), which in the equilibrium state is identical with (I),  except that the 
part corresponding to (a)is a zero-pressure plasma. Then if system (11)is unstable, 
so is system (I).  To demonstrate this it is merely necessary to note that the expres- 
sions for SW for the two systems differ only in that the vacuum contribution 
t Idr I curl A l2  for region (a )of system (I)is replaced by f curl (5 x B)  IZdr for 
system (11). Suppose gII and AII are trial functions which make the change in 
potential energy for system (11)negative. Then for system (I)choose AI = AI1 
and !I = gII except in region (a)and there choose AI = gI, x B, which is a valid 
trial function, since it satisfies the boundary conditions on A. This choice makes 
SW for (I)also negative. 

A second comparison theorem is established by considering two equilibria; 
case (I),a fluid region in contact with a surrounding vacuum region which in turn is 
enclosed by a rigid perfectly conducting wall; case (11), a fluid region which is 
identical with the fluid region of I ,  but is in contact with a surrounding vacuum 
region enclosed in a rigid perfectly conducting wall which either coincides with or 
is exterior to that of (I).Assume further that all equilibrium quantities are identical 
in the common regions of (I)and (IT). 

Suppose that vector fields 5 and A have been found which make SW negative for 
case (I).The vector potential A can be assumed to vanish identically on the rigid 
perfectly conducting wall enclosing (I)because of (2.35)and the fact that an arbitrary 
gradient can be added to A without changing SW. Clearly the same vector fields 
can be employed as trial functions for (11)with A chosen to be zero in any regions 
not common to both systems. Thus system (11)is certainly no more stable than (I). 

(a) Psocedure 

The energy principle shows that the question of stability of an equilibrium 
situation is reduced to an examination of the sign of SW(5,x) for arbitrary dis- 
placements g. For some equilibria physical reasoning leads to g's which make 
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6W{&E,) negative, and thus settles the question of stability in a simple manner. An 
example of this kind is given in 5 5. I n  general, however, it is not possible iminedi- 
ately to exhibit such a 5. I n  this case a procedure is needed for examining SW(& 5)  
for all admissible E,'s in a systematic fashion. One tries to make SW{E,, g) as small 
as possible. Since i t  is a honiogeneous quadratic form in g, one must introduce a 
condition to keep its values bounded from below. This condition can be chosen in 
any convenient way so long as it does not affect the sign of S W{g, 5). In  particular 
it can be chosen to lead to analytical simplicity in the minimization. For example, 
one can impose normalization requirements like ~d7,p,g2 = 1,or alternatively one 
can prescribe no .  E, on the fluid vacuum boundary (where a subscript zero as usual 
denotes equilibrium quantities). In  the latter case, it is, of course, necessary to 
minimize separately for all admissible prescriptions of no. g. 

Consider a plasma surrounded by a vacuum region. A convenient program for 
minimization consists of first examining 5's which do not move the interface (i.e. 
n,.E,= 0 on the interface). Note that with this boundary condition the snrface 
terms do not contribute to 6W and the non-negative vacuum term is minimized to 
zero by choosing A = 0. If 6W can be made negative, be it by inspection or by 
choosing a normalization condition and minimizing, then the equilibrium is 
unstable. 

Suppose, however, 6W is non-negative with the above boundary condition 
no.E, = 0. The equilibriuni still may not be stable since displacements which move 
the boundary may yield a decrease in potential energy. In  this case i t  is convenient 
to proceed by prescribing no.  E, (not everywhere zero) on the hid-vacuum boundary, 
and minimizing dWV and 815, separately. No volume condition like Id7, p,E,2 = 1is 
imposed here. Since SW, is a non-negative form whose Euler equation is 

curl, curl, A = O (4.1) 
it obviously has a minimum. 

Assume f~~ r the r ,  as is often true in practice, that there is a displacement g which 
makes 6M5 stationary subject to a given prescription of no.  E,. Then this stationary 
value must be an absolute minimum and thns unique. To show this let q be any 
displacement which satisfies the boundary condition no.q = 0. Then 

The assunlption that makes 6WF stationary requires that 6TV,{g, q) = 0,and leads 
to the Euler equation 

F{E,>= 0. (4.3) 

Now, since no.  q = 0, GW,{q, u ) )  is non-negative by supposition. Thus &Wig, E,) is 
a minimum. 

Form the scalar product of (4.1) with A, and of (3.3) with c, and integrate over 
their respectjive volumes. The resulting lninimum potential energy, subject to the 
prescribed boundary values n, .E,, is 

d W = _'S d~,n,.E,{ypOdivo~-B,.Q,-B,.(E,.grad,B,)2 A 

+ B, .curl A + 6,.(5.grad, B,,)). (4.4) 
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This expression, of course, represents the work done against the unbalanced first 
order total pressure (p + 4I B 1 2 )  in a displacement of the boundary. Note that SW 
in (4.4) is a functional of no .E,. The program is completed by minimizing (4.4) with 
respect to E, . no. 

(b) A physical interpretation 

The problem of minimizing the volume contribution 6WF subject to the boundary 
condition no. 5 = 0 ,under a particular norn~alization, yields conditions of physical 
interest on the minimizing E, when Vq5 r 0. These conditions are that to first order in 
5 the fields j and B are tangent to the surfaces p = constant. That this is true to 
zero order in 5, that is, for the equilibrium quantities, follows from (2.20). 

The choice of normalization for the demonstration is motivated by the fact that 
it is possible by judicious integration by parts to write 

where nois the unit vector normal to the surface p, = constant. It is obvious from 
(4.5) that a normalizing condition involving no. E, alone (e.g. j d ~ ,po(no.5 ) 2  = 1) 
should be sufficient to bound 6W,(g, 5) from below. Let E, minimize SW with such 
a normalizing condition. Any small change in 5, Ag, must leave SW stationary, 
if i t  leaves the norm stationary. From the self-adjoint nature of F, it follows that 

A[SW ]= -S d ~ ,Ag . F(S) = 0. 

Consider At's of the form A5  = Abj, + AcB,, 

where Ab and Ac are arbitrary since the normalization condit'ion involves only 
E,. grad,,pO, and j, and B, are orthogonal to grad, p,. Then it follows that the 
coefficients of Ab and Ac in the integrand of equation (4.6) must separately vanish. 
Now F(5) = ( -gradp + j x B),, where the subscript unity means the part first 
order in E,, so B,.(-gradp+j x B), = 0, 

jo . ( -gradp + j x B), = 0. (4.9) 

Note, however, that it follows on taking the first order part of the identities 
B .j x B = 0 and g' . j x B = 0, and using j, x B, = (gradp),, that 

B,. (j x B), + B, . (gradp), = 0, (4.1 0) 


j,. ( j  x B), + j,. (gradp), = 0. (4.11) 


Thus if one subtracts (4.10) and (4.11), respeetively, from (4.8) and (4.91, there 

results, correct to first order in 5, 
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Equations (4.12) and (4.13)express the conditions stated earlier, that to first order 
in E, the fields j and B are tangent to the surfaces p = constant. 

After some ma.iiipulation, (4.12) (or equivalently (4-8)) can be rewritten in the 
form Bo.grad, div, g = 0, (4.14) 

which is often useful in practice. 

Consider a plasma in which the magnetic field vanishes and the pressure is 
constant and outside which there is a vacuum region with a magnetic field. Let 
g5 = 0. It was suggested by E. Teller (1954,private communication) on intui- 
tive grounds that if the lines of force on the interface are anywhere concave to the 
plasma the state is unstable to local displacements. This is readily demonstrated 
using the energy principle. 

Choose a divergence-free displacement so that 

where ii is the normal to the interface pointing towards the plasma. Denote by 
R the vector from a point on a line of force to the centre of curvature of the line. 
Since, with I R I = R, 

@ . p a d  I B 12 = h.R--I B l 2  
R2 ' 

the surface term in (5-1) is negative or positive according to whether or not R points 
towards the plasma. If R everywhere points away from the plasma, 6W is obviously 
positive for all and A (even if div E,=p0) and the system is stable. 

Consider a point on the interface where R is directed towards the plasma and 
construct a local Cartesian co-ordinate system in a small region about this point, 
with the x axis normal to the surface and pointing into the vacuum, and the x axis 
in the direction of B. Choose the trial displacement g so that 

[Ax, Y, 0) = [of (x,Y)  sin ky, (5.3) 
where f is a function of order unity which falls to zero in the small distance n 4R 
and where ka2$R. Choose also the trial vector potential 

A(x,y, 2) =f (x,y)grad 

which satisfies boundary condition (2.33) where 

B = Be,. (5.5) 

These choices make the vacuum contribution to 6W negligible compared to the 
surface term. For 

S I)" 

while 
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Therefore, 6W is negative and by the energy principle the system is unstable. 
Note that the deformation which produces instability tends to flute the surface 

along the lines of force. This moves some of the magnetic lines of force into a region 
previously occupied by matter and thus shortens them while only slightly bending 
them. The result is a decrease in the magnetic energy with no change in the gas 
energy. 

Similar results have been obtained independently by H. Grad (1955) and 
C. Longmire ( I955) (both private communications). 

To estimate the rate of growth of this instability in the plasma choose the 
displacement 

Ez = 0, ty= &:O] f cos kg ekz, tB= [Jf sin ky eb. (5.8) 
This % satisfies div = 0 to order (ha)-l. Then the kinetic energy form is 

and 

This is unbounded as k approaches infinity. 
Gravitational effects are readily included in this case if we assume the fluid to 

have constant density but varying pressure in the equilibrium state. This situation 
is an extension of the hydromagnetic Rayleigh-Taylor problem (Kruskal & 
Schwarzschild 1954) to an arbitrary interface. Choose the trial functions 5 and A 
as before. The surface term in (5.1) is modified by the addition of the term 

which, in virtue of the equilibrium relation 

gradp = -p grad 4, 

becomes -/dg (8.5)2p~.gradq5. 

The calculation now goes through as before and the situation is unstable if 

anywhere on the boundary. I n  the case of a plane interface R is infinite and the 
familiar hydromagnetic Rayleigh-Taylor instability criterion is recovered. 

A more general case than that treated in the previous section occurs when a 
magnetic field may be present in the plasma. This situation can be treated exactly 
for two simple types of axisymmetric equilibrium situations. It is assumed that 
gravitational effects are negligible (q5 = 0). 

The first consists of a longitudinal current giving rise to a toroidal magnetic field 
whose pressure supports a radial material pressure gradient. This is the well-known 
pinch effect (see, for example, Kruskal & Schwarzschild 1954). 
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The second consists of longitudinal and radial magnetic fields produced by 
currents in the azimuthal direction. Again, a radial material pressure gradient is 
supported by the magnetic field. The plasma is assumed to be in contact with a 
rigid perfectly conducting wall. This equilibrium is studied here. It is shown that 
it is possible to reduce the problem of stability to the consideration of an ordinary 
second-order differential equation of the Sturm-Liouville type. In  fact, virtually 
all that is necessary is to find the number of negative eigenvalues which this equa- 
tion possesses. In  certain limiting cases one can further express the criterion for 
stability in terms of simple properties of the equilibrium. 

Note that in the previous problem of 5 5 either SW is obviously positive definite 
or one can easily display trial functions 5 and A which make it negative. I n  the 
problem of this section, however, it is necessary to examine the sign of SW for all 
possible displacements 5. This is accomplished by first writing 6W in a co-ordinate 
system natural to the problem and then successively minimizing with respect to 
the components of the vector 5. 

The equilibrium vector potential A, in a fluid of this type (which is to be dis- 
tinguished from the first order vacuum vector potential A previously introduced) 
has only an azimuthal component, since the current density j is itself azimuthal. 
Therefore, if in cylindrical co-ordinates (r, 8, z) one writes $ = rA,(r, z), then 

B = curl (e,@/r) = - (l lr)  e, x grad @. (6.1) 

It follows from equation (6.1) that B.grad $ = 0. Thus the lines of force lie in 
the surfaces @ = constant and also in the planes 19 = constant. Moreover, if one 
chooses @(O, x )  = 0, it is readily demonstrated that the magnetic flux interior to 
the surface @ = constant is 2 ~ $ .  

Because of this flux property, it is convenient to employ @ as a co-ordinate. In  
order to .retain an orthogonal co-ordina,te system, introduce a function 2 whose 
level surfaces are perpendicular to the surfaces @ = constant and 8= constant. 
Choose x so that the set (@, 8, X) forms a right-handed orthogonal sysbem. Note 
that the volume element in this co-ordinate system is 

dr = J d @ d B d ~ ,  (6.2) 
where 1/J= Bjgradxj  = g rad~9 ,g r adBxgrad~ .  (6.3) 

a i a i aThus grad e= ~ B e ~ ~ + ~ e , - + -
@ ae JB 2 % '  

grad @where ep = i-grix-$T' 
grad 0 

e, = ----I grade I ' 
e = grad X 

2 IgradxI 
Then, by (2.21) and (2-20), 

r a
j = -e,--(JB2) = je,

J a+ 
rB  aand gradp = j x B = -e!,J8.(JB2).

@ 
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Thus the pressure p is a function of @ alone and if differentiation with respect to 
$is denoted by a prime, (6.9) can be written 

1
Therefore J -eXp(- (d+$), (6.11)= B 

where the constant of integration (which is an arbitrary function of X) has in- 
cidentally been chosen to ma.ke x reduce to the magnetic scalar potential when 
p = 0. 

Note that it follows from (6.8) and (6.9) that 

p' = j /r 

and j / r  is consta,nt along a line of force. 
Using these results the potential energy for the system is 

Assume that the equilibrium quantities appearing in (6.13) are periodic over some 
fundamental period in x which is equivalent to  periodicity in z and also impose the 
boundary conditioil that 5 be periodic in x over this period. All definite integrals 
with respect to x are to be understood as extended over this period. The last term 
in (6.13) then integrates to zero. 

Now proceed to minimize SW over all displacements E,. First note that the 
integrand in (6.13) depends on 8only via E,. This suggests Fourier analysis of 5with 
respect to 0. Write in the form 

The potential energy 6W is to be minimized over the set (X,, Y,, Z,, If)). 
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Upon integration with respect to 19,the cross terms of the double series vanish and 

(JX,) + JY, + ----ax 


and +STC is obtained by replacing Ymin (6.16) by m<bo)/rand setting m == 0. 
Since for each m, 6Wm depends only on the set (X,, Y,, Z,), it can be varied in- 

dependently. It is clear from (6.16) that if 6Wm can be made negative then 6Wm+, 
can also be made negative. Thus it suffices to consider only the limiting case m = co. 
Do so and suppress the subscript a.After some algebraic manipulation, (6.16) 
becomes 

For arbitrary fixed trial functions X and Z the expression above is minimized 
with respect to Y by choosing 

(6.18) 

which makes 

where 

is positive or negative at  a point 2 ,  $ according to whether the line of force through 
that point is concave or convex towards the side of smaller $. Consequently, the 
system can be unstable only if somewhere a line of force is concave toward the side 
of larger p. 

Equation (6.18) corresponds to (4.13) of the general minimization scheme, the 
content of which is that the minimizing displacement is such that the perturbed 
current density j lies in the perturbed constant pressure surfaces. 

3-2 
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Next, the Euler equation resulting from minimizing (6.19) with respect to Z for 
fixed X reads 1 

This equation corresponds to (4.12), the content of which is that the perturbed lines 
of force lie in the perturbed constant pressure surfaces. Equation (6.21) yields on 
integration with respect to x 

The constant of iiitegration f ($) is determined by integrating (6.22) with respect 
to X,namely, 

where 

Note that Vtd$ is the volume contained between two neighbouring constant 
y? surfaces. 

The minimum 6 Wnow is 

The integrands above do not conta,in any derivatives of X with respect to $. 
Thus one can consider $ to be merely a parameter and write 

where 6W($) depends only on the values of X on the surface $. Consequently SW 
can be made negative if and only if SW($) can be made negative for some value of 7,h. 

As in $4,it is necessary to normalize X to achieve a well-posed minimum problem. 
An analytically simple normalizing conditiol~ is 

H = inS dxJX2= 1. 

The minimization of 6W($) under this norllialization is equivalent to minimizing 

Note that L', V' and J are all positive and only the term involving D can make 
A negative. It is possible to derive a sufficient condition for instability from (6426) 
by choosing X to be constant in X.Then 

and if for any value of $ this expression is negative the system is unstable. 
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I n  certain limiting cases it is possible to derive necessary and sufficient stability 
criteria directly from (6.26). I n  general, however, one must proceed with the 
formal minimization program. 

The Euler equation resulting from the minimization of A is 

~vherethe variation in f has been coniputed from (6.23). 
It is possible to derive from (6.28) certain general criteria for stability by ex- 

panding its solutions in terms of the eigenfunctions X, of the Sturni-Liouville 
equation 

obtained by omitting the integral on the right-hand side of (6.28). 

FIGURE1. Schcrnatic plot of B(A)against A. 

By the Sturmian theory (Ince 1944) t'he Xj comprise a conlplete set of eigen- 
functions with associated eigenvalues hj.The hjare all distinct and can be arranged 
in an infinite increasing sequence A,, A,, .... Note that the Xj can be normalized 
such that 

SdxX,Xj J = 

Thus one can write X = C b i X j ,  

D = cajxj. 
Then there results upon substitution in (6.28) 

and in virtue of (6.30) i t  follows that 

But if one substitutes (6.31) and (6.32) into (6.23) and then employs (6.30) and 
(6.34) one finds 
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The roots of (6.35) determine the possible values of A. Denote the right-hand 
side by F(A) and plot it versus A. Note that dB/dA <0. If none of the a,.is zero the 
graph is as in figure 1and the intersections of this curve with the horizontal line 
P(A) = (in)(L' + V'lyp) are the eigenvalues Aj  of (6.28). If aj = 0 for some j ,  the 
associated branch of F(A) is not present in the diagram. It follows in this ca'se from 
(6.34) that the associated root is A = Aj. This is also the result which one would 
obtain if one considered the limit as nj+ 0 of the associated intersection of the graph. 

Clearly from figure 1, A, <A, <A, Q A,. . . . Thus if A, is positive, so are all the 
Ai's while if A, is negative, then A, is negative. If A, is negative and A, positive, 
then the sign of A, is not obvious. However, it is possible in this case to derive a 
criterion for the sign of A,. Integrate (6.29) with respect to X.There results 

Thus 

Now assume that A, <0, A, >0. Since A, is determined by the condition 

and F(A) is monotonically decreasing in the interval A, <A <A, ...,it  is clear that 
if F(0)> (1127~)(L' + V'lyp) then A, > 0 and conversely. But 

1 ( ) - " ("" P')F(0)-- I,'+- - ----- -+--
2?7 2rp' v' yp 

One can write h,>O-+-Al>O, 

In  three limiting cases stability criteria can be obtained directly from (6.26), 
(i) if the material pressure is small compared with the magnetic pressure (i.e. 
2p  <B2), (ii) if the surface $ = constant under consideration lies close to a cylinder 
and (iii) if the pressure gradient is large. 

(a)Case I 

Consider all quantities to be expanded in some parameter of smallness which 
essentially measures 2p/B2 and write 

with similar expressions for other quantities. There results from (6.26) to lowest 
order, 

Ace) dX J(O)X(0)2 ,d~ 1 axco, 2f f [,W)B(0)]2Jm [=]' (6.41) 



39 An energy principle for hydromagnetic stability problems 

Clearly A(0)is minimized by choosing X(0)constant in X ,  which yields A(0)= 0. This 
expresses the fact that the lowest order equilibrium is neither stable nor unstable, 
but neutral. Proceeding to the next order we find 

which by employing (6.23) can be reduced to 

The sign of determines stability in this case. Equation (6.43) agrees with the 
criterion of (6.39) in the case 2p/B2< 1, since if V"pt> 0 ,  hl > 0 and both equations 
yield stability, while if V0p' < 0 ,  A, <0 <A, and (6-43)agrees with the second part 
of (6.39). 

(b) Case I1 

Consider a surface @ = constant. Denote by R the radius of curvature of a line 
of force, by L the characteristic length for the variation of equilibrium quantities 
along a line of force, and by a the characteristic distance in which the pressure 
changes by an amount comparable with itself. Assume that everywhere on this 
suxface @ = constant, 

L2rlRa2<1, (6.44) 

in which circumstance the positive term in A proportional to ( a X / a ~ ) ~dominates, 
unless a X / a x  = 0 to lowest order in the parameter of smallness. Thus one is led to 
choose X(0)= constant. This leads immediately as in (6.27) to the first-order 
result A = 1/13(VN- p t L t )  (V"/V t+ p t / y p )(vn+ypLt)-l ,  (6.45) 

Equation (6.45)reduces to (6.43)in the limit of small p. If L2r/Ru2< 1 for all surfaces 
@ = constant, then that (6.45) be negative on some surface is a necessary and 
sufficient condition for instability, otherwise it is only sufficient. Relation (6.44) 
is obviously satisfied if the surfaces are very nearly cylindrical. 

Equation (6.20)gives an estimate as to the order of magnitude of R. If the two 
terms in the first line of (6.20) do not cancel, one obtains 

R -a2/r. (6.46) 

However, if they do cancel, as in the case of the cylinder, R is an order of magnitude 
larger. n7ith this reservation, (6.44)reduces to 

r <u2/L .  (6.47) 

Equation (6.45) is thus valid, for any equilibrium, for $ surfaces close enough to 
the cylindrical axis. 

(c) Case 111 

Consider an equilibrium such that everywhere on some surface @ = constant 

Igradp I %B 2 R / S 2 ,  (6.48) 

where R again is the magnitude of the radius of curvature of a line of force and S is 
the distance over which it has the same sign. Assume that there is some region on 
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this surface for which p'D <0 and construct a trial function X which is zero outside 
of this region and varies smoothly within it.Then inequality (6.48)guarantees that 
the term in p'D in (6.26)dominates and the associated A is less than zero. Thus the 
equilibrium is unstable. I n  the appropriate limit this case corresponds to the 
complete separation case of 5 5. 

The authors are indebted to Dr Lyman Xpitzer, J r  for enouragement, criticism 
and stimulating discussion. 
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