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The relation of magnetic helicity to the topological structure of field lines is discussed. 
If space is divided into a collection of flux tubes, magnetic helicity arises from internal 
structure within a flux tube, such as twist and kinking, and external relations between 
flux tubes, i.e. linking and knotting. The concepts of twist number and writhing 
number are introduced from the mathematical-biology literature to describe the 
contributions to helicity from twist about the axis of a flux tube, and from the 
structure of the axes themselves. 

There exists no absolute measure of the helicity within a subvolume of space if 
that  subvolume is not bounded by a magnetic surface. However, a topologically 
meaningful and gauge-invariant relative measure of helicity for such volumes is 
presented here. The time derivative of this relative measure is calculated, which leads 
to an expression for the flow of topological structure across boundaries. 

1. Introduction 
Many vector fields in nature are divergence-free; thus, for example, magnetic field 

lines, vortex lines, and the streamlines of incompressible fluids do not have endpoints. 
This property allows us to  examine such field structures in terms of the topology of 
closed curves (some complications arise when field lines are ergodic rather than truly 
closed, as is discussed in Arnol’d 1974). The topology of curves (e.g. White 1969; 
Rolfsen 1976) is of general scientific interest, and has proved useful in such areas as 
the study of DNA structure (Fuller 1971, 1978; Crick 1976; Pohl 1980), the 
description of three-dimensional excitations of chemical and biological media (Winfree 
& Strogatz 1984), and the study of polymer chains (Frank-Kamenetskii, Lukashin & 
Vologodski 1975). 

Moreau (1961) and Moffatt (1969, 1978, 1981) have shown that a pseudoscalar 
‘helicity ’ integral of the form X.V x Xd3x can be associated with the topological 
properties of the field lines of V x X .  For example, the magnetic helicity 

H = A .  Bd3x, ( 1 )  s 
with A the vector potential, measures the linkage of magnetic field lines; for two 
untwisted closed flux tubes linked once (and with a volume of integration containing 
both tubes) 

where GI and cD2 measure the magnetic flux of the tubes, and the sign of H depends 
on the sense of linkage. This result follows from Stokes’ theorem, which relates the 
line integral of A along a closed field line to the total flux linking the line. 
Furthermore, Arnol’d (1974) has found that helicity integrals can be described 
mathematically in terms of topological objects such as the Hopf invariant and the 
Gauss linkage integral (e.g. (17) below). 

H = +_2@,@,, ( 2 )  
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This paper will investigate in detail the relation between helicity integrals and field 
structure. For definiteness, we will concentrate on the properties of' magnetic helicity, 
but many of the results presented here are of a general nature. Particular emphasis 
will be placed on describing a topological measure of the field structure contained 
in an arbitrary subregion of space. Unfortunately, the integral in equation ( 1 )  has 
topological meaning only if the volume of integration Y is over all space (and the 
fields vanish a t  infinity), or, more generally, if the boundary S of Y is a magnetic 
surface (B-fil, = 0). Otherwise, some field lines will cross the boundary and close 
outside V.  The linkage properties of these lines with the other lines inside Y will 
then be ill-determined, given only information about the field inside Y .  

An associated problem is that  of gauge-invariance : Let A + A  + V6. Then from ( 1 )  
the change in H is 

AH = jv Vg. b d3x 

Only if 8 is a magnetic surface will the helicity integral be gauge-invariant. In  the 
last step of (3) it  has been assumed that the gauge transformation V t  is defined 
throughout a simply connected volume containing V .  Otherwise (for example, if Y 
is a torus and 6 measures toroidal angle), 6 will be multivalued. H will then be 
gauge-invariant within a magnetic surface with the restriction that the line integrals 
of A about the holes in the volume be specified (Moreau 1961 ; Taylor 1981). 

Note that, if B.fil, + 0, we cannot simply choose to work in Coulomb gauge in order 
to define H ;  Coulomb gauge is ill-defined inside Y without a knowledge of the outside 
field. The different divergence-free vector potentials inside Y correspond to Coulomb 
potentials of fields which have differing structures (and perhaps differing linkage 
properties) outside Y .  The gauge-invariance problem is not restricted to magnetic 
helicity. Although the fluid helicity 

I = Jv V-V x Vd3x (4) 

is based upon a physically well-defined density V.w (where w = V x V), i t  can be 
related to the topological structure of the vortex field w only if adding potential flows 
to V does not affect I. Again, gauge invariance is ensured only if the boundary surface 
S has w-fil, = 0. 

In spite of the above restrictions, it seems plausible that there should be some 
well-defined measure of the linkage due to the twisting and tangling of field lines in 
a region of space not bounded by a magnetic surface, just as one can describe the 
amount of supercoiling of a length of telephone cord, or of a segment of DNA (Fuller 
1978). In  $3  we will show that such a measure does exist: for any simply connected 
volume Y ,  the difference in helicities (integrated over all space) of any two field 
configurations that differ only inside Y is independent of the structure of the fields 
external to V .  Thus, the volume Y ' s  contribution to the overall helicity of a field 
has a well-defined relative measure. A particularly useful reference field inside 9'- is 
the potential field, as it is completely determined by B-iil,. 

The magnetic helicity is a constant of the motion in ideal magnetohydrodynamics 
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(MHD) (Elsasser 1956; Woltjer 1958), as the field lines (and their linkage properties) 
are frozen into the fluid as it moves. Similarly, the fluid helicity (Moffatt 1969) is a 
constant of the motion in ideal hydrodynamics when all external forces are potential. 
As Carter (1979) has noted, fluid helicity as a conserved quantity provides a 
volume-integral counterpart to surface integrals of vorticity and line integrals of 
circulation. The conservation equation for the magnetic-helicity density h, is readily 
derived from the homogeneous Maxwell equations, and can be written in the form 

( 5 )  
ah, 
at 

-+cV*h = -2cE*B, 

where h, = A * B  and h = E X  A+#B.  Here # is the scalar potential. The source term 
E * B  vanishes in ideal MHD. Note that each term in the equation is a pseudoscalar. 
This equation is fully relativistic, and can be expressed in 4-vector language (Carter 
1978). 

Two important classes of electric fields conserve helicity. First, if E can be derived 
from a potential, E = -V#, then V*h = -2E.B. Thus ah,/at = 0, as expected from 
the induction equation as applied to electrostatic fields : 

- = -cV x E = 0. 
i3B 
at 

As a second example, in ideal MHD E = B x V/c ,  so that 

ch = h, V -  ( A  V) B ;  (7)  

this leads to conservation of the total helicity contained in comoving volumes 
bounded by magnetic surfaces also moving with the fluid (Moffatt 1969). These 
results bear close analogy to Newcomb’s (1958) analysis of field-line motion. First, 
the suBcient conservation condition for H, 

V X  E + - V x B  = 0 ,  c 1 
is equivalent to Newcomb’s condition for the existence of flux-preserving velocit,y 
fields. For example, when H arises from the linkage of flux loops, H-conservation 
follows from preservation of the flux linking each field line in the loops. Also, the 
stronger and relativistically invariant condition, E*B = 0, holds true if and only if 
there exist relativistic generalizations of field lines, i.e. surfaces in space-time that 
(in any reference frame) are traced out by moving magnetic lines. 

Magnetic helicity may not be conserved when finite resistivity is present. Assuming 
a linear Ohm’s law, 

1 
E - - B x  V = v J ,  

c 

the helicity-dissipation rate is 

- - 2c jv qJ. Bd3x. 
dH 
dt 
_ -  

(9) 

This dissipation rate may often be small, however: Taylor (1974,1981) has conjectured 
that helicity should be approximately conserved on ideal or reconnection time- 
scales in high-magnetic-Reynolds-number plasmas. Furthermore, Berger (1984) has 
obtained strict limits on helicity decay in an isolated plasma. These limits tend to 
support the Taylor conjecture. 
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The plan of this paper is as follows. In  $ 2  we will relate magnetic helicity to the 
morphology of closed field structures. Helicity will be described in terms of the 
internal structure of a flux tube, and the external relations between flux tubes. Also, 
the concepts of twist number and writhing number (Fuller 1971, 1978) will be 
introduced. I n  $ 3  the helicity of open field configurations not bounded by magnetic 
surfaces will be discussed, and a measure of the propagation of topological structure 
across open boundaries will be given in $4. Conclusions will be presented in $5. 

2. The helicity of closed field structures 
I n  analysing the morphology of a field, i t  is often useful to separate space into 

regions bounded by magnetic surfaces. The magnetic helicity of the field can then 
be decomposed into a sum of internal helicities corresponding to structure inside 
each region, and external helicities due to interlinkages among the regions. This 
decomposition is conserved in ideal MHD. If the field structure is relatively simple, 
the separatrices of the field provide a natural choice for the magnetic surfaces, as they 
separate space into cells consisting of topologically equivalent field lines (i.e. the lines 
within a given cell have identical linkage properties). If the field were ergodic within 
a finite volume, however, the concept of separatrix surface would break down, and i t  
would then become necessary to integrate the helicity over the entire ergodic region. 

The separatrix structure can also become complicated if the field resides in a very 
large or unbounded region. Suppose that the field structure looks simple locally, but 
that  any two neighbouring field lines would be seen to diverge if they were followed 
sufficiently far. I n  that case, the cells defined by the separatrices would each carry 
infinitesimal flux. This situation may be dealt with by assuming a simple form for 
the faraway field - the fewer branchings included in the description of the field, the 
simpler the separatrix structure. I n  $ 3  it will be shown that, for the purpose of 
comparing different local field configurations, i t  does not matter which external field 
is chosen. 

Internal helicity can easily be computed for a volume consisting of nested toroidal 
magnetic surfaces. For a particular surface, let Yp be the poloidal flux threading the 
hole of the toroidal surface, and let YT be the toroidal flux contained within the 
surface. For an infinitesimal annular volume containing flux (dYT, - dY,), the 
linkage helicity with the fields outside (counted once) is Yp dYT (i.e. the toroidal flux 
within the annulus dYT links the poloidal flux Y, as in (2)). Similarly, the linkage 
helicity with the fields within is - YTdYp. Thus the helicity of the annular 
volume is 

d H  = YpdYT- YTdY,; (11) 

this result was obtained analytically by Kruskal 8.1 Kulsrud (1958). 
After integrating the first term by parts, we obtain 

H =  2 TYTdYT, I 
where @ is the total toroidal flux, and T = -dYP/dYT. T can be any real number, 
and represents the number of times a field line winds around the torus in the poloidal 
direction (the short way around) for one circuit in the toroidal direction. For a 
uniformly twisted torus with T twists, 

H = T@'. (13) 
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FIGURE 1. Figure-of-8 shapes. A typical field line is shown. (a) H K  = + W ;  ( h )  H ,  = -@. 

Note that a torus with T = f 1 may be distorted, or kinked, into a figure-of-8 
configuration which appears untwisted (see figure 1). The internal helicity of the torus 
will in general be manifest as some combination of twist and kink helicity (plus, 
perhaps, contributions from a stochastic component of the field). 

A simple formula may be derived for the helicity of an arbitrarily twisted, kinked 
and knotted flux tube. We express H as the sum of twist helicity and of knot (and 
kink) helicity, 

This decomposition is not topologically invariant, as it separates twists and kinks, 
which can convert into one another. To fix the zero of H T ,  we adopt the convention 
that, for an ‘untwisted’ knotted or kinked tube, a field line can be drawn on top of 
the tube along its entire length as viewed in a plane projection (figure 2 a ) .  This line 
sets 0 = 0 for a poloidal coordinate system on the tube; the winding number of a 
twisted tube can be defined with respect to this system. An alternative definition of 
HT and H ,  which does not involve a particular plane projection will be given below. 

At each crossover exhibited by the knot, we reconnect (without changing H ,  or 
H,) the magnetic lines on either side of the crossover to create a figure of 8 (figures 
2b ,  c) .  A crossover is called positive or negative according to the sign of H for the 
corresponding figure of 8. Then 

H =  HT+H,. (14) 

H ,  = @2(N+-N-) ,  (15) 

i.e. the flux squared times the number of positive crossovers minus the number of 
negative crossovers. Note that the result for the trefoil knot with a minimum of 
crossovers ( H ,  = + 3Q2) differs from Moffatt’s result (1978, p. 15) ; kink helicity was 
not properly accounted for in his calculation. A collection of linked and knotted flux 
ropes may be dealt with in a similar fashion. In this case, one must reconnect each 
individual rope to itself (because different ropes may have different fluxes) to finally 



138 M .  A .  Berger and G. B. Field 

FIGURE 2 .  A trefoil knot with H K  = - 3 P  

obtain a collection of interlinked simple loops and figure of eights. Equation (15) still 
holds, with Q2 replaced by a product of the two fluxes present a t  a particular 
crossover. 

The external helicity of a knot we define as equalling H ,  if the knot exhibits a 
minimum of crossovers. For two linked flux tubes, the external helicity is 2L,, 0, Q2, 

where L,, gives the number of linkages (Moffatt 1969); this is a generalization of (2). 
Note, however, that, as L,, increases, the tubes must become more and more kinked, 
so that internal helicity cannot be ignored in computing the total helicity. There is 
one situation where internal helicity can indeed be neglected : one may compute the 
helicity of a configuration by approximating the field as consisting of a large number 
N of closed flux elements, each containing a small flux 6Q. In  this case, 

Note that (6Q), and the internal helicities Hi,int vary as N-2.  As N+co the 
interlinkage sum will reach a finite limit since it contains N2 terms, but the internal 
helicity sum vanishes as N-l .  

The decomposition into H ,  and H ,  depends on the angle of projection employed 
to find the crossovers. This deficiency can be removed by introducing the concepts 
of twist number Tw and writhing number Wr (Fuller 1971, 1978). Let X ( s )  be a 
closed curve, where s parametrizes length along the curve. Also let V ( s )  be a vector 
perpendicular to X ( s ) ;  the ‘t ip’ of U(s)  defines a second closed curve Y(s) ,  and the 
surface between the two curves can be visualized as a ribbon. In  the DNA application, 
X ( s )  can be taken to be the axis of the molecule, and the outer curve Y(s) to be one 
of the two nucleotide chains. Similarly, we may take X ( s )  to be the central axis of 
a magnetic flux rope, and Y(s) to be a field line winding its way along some toroidal 
surface within the flux rope. 

The linking number L,, of the two curves can be found from the Gauss linkage 
formula : 

dX(s) r dY(s’) L,, = -& $ds $ds’ ds*7 x ds’, 

where r = X ( s ) -  Y(s’). When integrated over all space, the helicity integral can be 
expressed in a similar form (Moffatt 1969, 1981 ; Arnol’d 1974). I n  Coulomb gauge 
the vector potential A is given by 

A ( x )  = - 1 S d 3 d  J(x’) 
C r 
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where r = x-x’. Using J = (c/4x) W x B and integrating by parts, we find that 

which gives 

r 

H = Jd3x Jd3z’B(x).--x r B(x’). 
4.n r3 

The twist number is given by 

Tw = 2.n l$ds 3- ds O(S) x qS), 

with o= V/lq (in general, (21) will not work for a field line Y that travels 
perpendicular or backwards with respect to X, because then O(s) would not be 
single-valued. However, Tw can still be defined for ill-behaved Y-curves via (23) 
below.) Finally, the writhing number is the Gauss linkage integral applied to the axis : 

Wr=--$ds$ds’-*-x- 1 dX(s) r dX(s’) 
4.n ds r3 ds’ ’ 

where r = X(s)-X(s’) .  Wr can be shown to equal the signed sum of crossovers (as 
in (15)) exhibited by the axis curve, averaged over all projection angles (Fuller 1978). 

White (1969) has proved that 

L,, = T w +  Wr (23 1 
(an earlier, more restricted version of this theorem was found by CBlugiireann 1959). 
Of these quantities, only Tw can be defined for a subsection of a ribbon, as L,, and 
Wr are given by double integrals. On the other hand, only L,, is topologically 
invariant, i.e. unchanged by deformations of X and Y that do not let the two curves 
cross each other. Furthermore, the writhing number has the unique property of 
depending only upon the geometry of the axis curve X. 

Given the basic interpretation of magnetic helicity as arising from the linkage of 
field lines, the similarity between (14) and (23) is not surprising. H ,  and H,, 
previously calculated using one projection angle as in figure 2, may alternatively be 
averaged over all projection angles through the use of (23). To see this explicitly, 
consider a small bundle of field lines with net flux 6YT in the neighbourhood of a 
particular line Y (assume for simplicity that Y is a closed curve - the case of curves 
with irrational twist ergodically covering a flux surface can be dealt with v‘ia a 
limitzing process (Arnol’d 1974 ; Fuller 1978). The total linkage helicity between the 
flux element 6YT and the flux YT interior to  Y is 

(24) 6H = 2Lx , YT 6 yT. 

Employing (23) and integrating, we obtain expressions for H ,  and H ,  in terms of 
the twist number and the writhing number: 

HI( = W r Q 2 .  (26) 

If the flux tube is relatively flat, so that one sees the same signed number of crossovers 
(15) from nearly all projection angles, then the two definitions for HT and H ,  given 
in this section will be approximately equivalent. 
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3. The helicity of open field structures 
The linking and writhing numbers of a ribbon are well-defined only if the ribbon 

is closed. However, Fuller (1978) demonstrated that the linking number of an open 
segment of a ribbon can be defined relative to a reference segment with the same 
endpoints. This result has application to the study of compact protein structures, 
called nucleosomes, which act as spools around which the DNA of higher organisms 
is wrapped (Crick 1976; Worccl, Strogatz & Riley 1981). The difference in linking 
numbers between a closed ribbon containing a nucleosome segment, and the same 
ribbon with a reference segment substituted in place of the nucleosome, is only weakly 
dependent on the exterior ribbon structure (totally independent if the exterior ribbon 
remains outside of some simply connected volume containing the nucleosome). We 
will prove an analogous result for the topology of continuous fields. 

Let space Y be divided into two simply connected regions Va and Vb separated 
by a boundary surface S (in general Ya and YB could each be unions of separated 
simply connected components). A divergence-free field B in V will be denoted by an 
ordered pair, for example 

whose value a t  a point x is 
(Ba> B b ) ,  (27) 

To ensure V - B  = 0, we must require that 

B a  * fil S = Bb ’ fils, (29) 

(30) 
A 1 , .  where 

is a unit normal pointing away from Va. 
Let H(B) = H(Ba ,  Bb) denote the helicity of the field described by (28) integrated 

over the entire volume V .  We consider only fields whose source currents exist in a 
finite region of space. This guarantees the gauge invariance of H(B), as the ‘surface 
a t  infinity’ will be a magnetic surface. 

n = nu = -nb 

Consider two fields B, and B, that  differ only in Va. We wish to show that 

AH H(B,) - H ( B , ) ,  (31 1 
is independent of their common extension into Yb (figure 3). Using the terminology 
of (27) and (28), B, and B, can be written 

Bl = (B la ,  B b ) ,  (32) 

B2 = (BZa> B b ) .  (33) 

The theorem to be proven states that  AH can be calculated without any knowledge 
of Bb. I n  other words, 

H(B1a, Bb)-HH(B2a, Bb)  = H(B,a, B k ) - H ( B 2 a ,  B h ) ,  (34) 

for any fields Bb and Bk that  satisfy the given boundary conditions (29) a t  S. 
Let A ,  and A ,  be vector potentials for B, and B,. From ( 1 )  

AH = jv (A;B,-A2-B,)d32 (35) 

( A ,  -A2) . (B ,  + B,) d32+ (A2*B,  -A, .B2)  d32. (36) 
= s, 
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FIGURE 3. The difference in total helicity of these two configurations is 
independent of the field in Vb. 

By an integration by parts, the second integral vanishes. Also note that 
v x A, = V x A, inside Vb. Hence, inside Vb, A,- A, = Vx for some scalar x. 
Separating the first integral into contributions from V, and Yb, 

I. r 

AH = (A,-A,)*(B,+B,)d3z+J Vx*(B,+B,)d3x, 
Y U  v b  

(37) 

= jyu (A, - A,)*(B,, +B,,) d32- x(B,,+B,,).ii dS. fS (38) 

Note that the assumption of simply connected volumes ensures that x will be 
single-valued. 

From (19), if Coulomb gauge is used for A, and A,, then 

(39) 
1 r 

A,W-A,W = - G J v a 2 x  (~,,(x’)-~,,(x’)d’z’. 

This shows that in Coulomb gauge A, - A, and x only depend on the fields inside V,. 
Hence (38) proves the assertion that AH is independent of Bb. One may check that 
(38) is gauge-invariant: if Vt ,  is added to A, ,  and V<, is added to A,, then the change 
in AH is 

= 0. (41) 

This theorem can be extended to allow Y to be a subvolume of space bounded by 
a magnetic surface. In this case, the helicity integrated over Y might depend on fields 
external to Y .  For example, Y could be a torus, and Y,, Vb could be created by 
cutting Y a t  toroidal angles 0 and 7c. Any external fields Bext linking ^Y- would then 
contribute to the helicity integral. We can express the theorem when 9‘“ is a 
subvolume in a manner similar to  (34): 

H(B1u,  Bb,  B e x t ) - H ( B 2 u ,  Bb, Bex t )  = H(B1u,  Bh> BLxt)-HH(Bza, Bb, BLxt)> (42) 

where BLxt need not equal B e x t .  By lumping together V b  and the space external to 
V into one region Yc, so that space can again be divided into two regions, i.e. Y, 
and “tT,, we find that (42) follows directly from (34). 

Suppose we wish to examine the helicity of the fields contained within V,. Because 
only differences in helicity are meaningful, a reference field will be needed. The 
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FIGURE 4. Two simply connected surfaces divide space into “Va, “Vb and V,. The field lines of P, 
are shown. For the boundary conditions shown, H(Pa, Pb, P,) is non-zero. 

potential field in V,, P,(V x P, = 0 )  is an especially useful reference field because it 
is completely determined by the boundary conditions B.fil,. Furthermore, P, is the 
minimum energy field for these boundary conditions. Let the ‘relative helicity of V, ’, 
H R ( V u ) ,  be defined by 

H€L(Y,) = H(B,, -H(P,, B;), (43) 

HR(Vb) = H ( B L ,  Bb)-H(B; ,  pb)> (44) 

with BL arbitrary and Pb the potential field inside V b .  

The total helicity inside V can be decomposed into contributions from the two 
relative helicities, plus a term due to  the potential fields. Choose Bi = P, and B; = Bb 
in (43) and (44). Summing the two equations results in 

where, by the theorem just proved, BL is arbitrary. Similarly, let 

H(Bu,  Bb) = HR(Vu)+HR(Vb)+H(Pu,  (45) 

The last term only depends on the shape of the boundary S, and the distribution of 
B-fils. 

This addition law for relative helicities can be generalized to the case where space 
is divided into N simply connected volumes Vi, i = 1 ,  . . . , n. Write the magnetic field 
in a form similar to (27), B = (B, ,  ..., B N ) ,  and let P, be the current-free field 
determined by the normal field component at the boundary of Vi. Then, by choosing 

H R ( V i )  = H(P, ,  * * .  4-1 > Bi, Bi+1, . .. > B N )  - H ( P , ,  * * * 1 4-19 pi,  Bi+1, . . . , B N ) ,  (46) 

one finds 
N 

i=l  
H(B) = c. H , ( Y i ) + H ( P , ,  ... ) PN). (47) 

If the last terms in (45) or (47) are non-zero, then the minimal fields determined 
by the normal components at the boundaries have net linkage. For example, consider 
the configuration shown in figure 4. Here V, and Yb are horseshoe-shaped volumes, 
and Vc contains the space external to the horseshoes. If B-fil, is non-zero only a t  
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- 
-J 

FIGURE 5.  A single simply connected surface that can have non-zero H(P,, Pb). 

the ends of the horseshoes, then P, will be as shown, while the field lines of Pa and Pb 
(not shown) travel inside Va and Vb more or less parallel to the axes of the horseshoes. 
The total magnetic field can be treated to a very good approximation as two linked 
flux tubes with zero twist helicity (there is no toroidal current within Va and y b  to 
generate poloidal field components). Thus the helicity H(Pa, Pb, P,) is given by (2). 

Figure 5 provides an example of a geometry with only one boundary surface where 
the potential fields have non-zero helicity. In  this configuration, Va consists of a 
horseshoe-shaped volume which has been given one kink. Again, the field pierces the 
boundary of Va only a t  the ends. Because the interior of Va has zero current, H(Pa, Pb) 
equals the kink helicity H ,  of a figure-of-8 shape (figure 1). For general fields that 
satisfy the boundary conditions of figures 4 or 5, the potential field helicity can be 
subtracted from the total helicity to give us the sum of the relative helicities. The 
relative helicities thus contain information about the helicity generated by currents 
within the volumes (for example, the twist helicity H ,  inside the volumes). 

When the boundaries between the Vi are parallel planes or concentric spheres, the 
potential-field helicity vanishes identically. For simplicity, consider the case where 
there is only one boundary surface, and calculate H(Pa, Pb) explicitly. We may write 
Pa = V$, and Pb = V$b,  where $a, kb are solutions to the Laplace equation with 
Neumann boundary conditions. Denote the Coulomb vector potential associated with 
(Pa, Pb) by A,. Then (using V - A ,  = 0) 

Note that the source currents for (Pa, Pb) exist as a current sheet on S. For a current 
sheet confined to a plane (say the (x,y)-plane) we have J ,  = 0. By (18) this implies 
that A,.ii(, = 0. For a spherical current sheet, let us evaluate A,.f?l, a t  the north 
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pole (0 = 0). If $(6, $) is the current density on the sphere, R the radius, and f i  = 2 
a t  6 = 0, then from (18) 

f X  f 211: 

Ap(6 = O) . f i l  - sinBdB(2Rsin~fl)-'J d$fz(O,#). (49) 
s- J,, 0 

However, the integral o f f ,  over azimuthal angle $ must vanish; otherwise $ would 
have non-zero divergence. As the point 0 = 0 has no special physical significance, we 
may say in general that 

when S is a sphere or a plane. Therefore, when Y'- contains all space and S is a plane 
or a sphere, H(P,, P,) = 0. This makes the relative-helicity formulas especially simple: 

A,.iils = 0 ,  (50) 

Also, in this case the sum of the relative helicities does equal the total helicity. 
In general, (50) holds true for each boundary when space is divided into subvolumes 

by parallel planes or concentric spheres. I n  such geometries H(P,, ..., P,) = 0, and 
the addition law is 

N 

i-1 
H(B) = z HR(Yi). (53)  

4. The flow of helicity across boundaries 
The time derivative of H R ( Y a )  provides a gauge-invariant measure of helicity flow 

across the boundary S, as well as a measure of the internal helicity dissipation inside 
Va. By choosing Bk = Pb in (43), 

From (S), dH/dt = - 2c jv E .  B d3x. Thus 

E .  B, d3x - 2c jvb E S P ,  d3x. 
d 
dt 
-H(B,, P,) = - 2 ~  

In  Yb it  will be convenient to employ the gauge Pb = V x A,. In  this case 

ESP, = E*V x A ,  

= A,.V x E + V * ( A ,  x E) 

Also. 

i ap, 
c at = - A P . - - + V . ( A ,  x E) .  

Thus the Vb contribution to (55)  becomes a surface integral : 

(55) 

A,xE----A,)-fidS. c at (58) 



The topological properties of magnetic helicity 145 

Next consider the second term in (54): 

Equations (54), (55), (58) and (61) combine to give 

The volume integral gives the internal helicity dissipation, while the surface integral 
measures the flow of helicity across S. As A, and $, are completely determined by 
B-iil,, this equation is gauge-invariant. Note that the second term in the surface 
integral vanishes when S is a plane or a sphere, because then A,*iil, = 0 (50). 

Let us compute the flow of relative helicity across a plane boundary for torsional 
motion on the plane and for circularly polarized Alfvhn waves. Let S be the (x, y)-plane 
and Va the upper half-space z > 0. Assume that B-iil, is cylindrically symmetric, 
E = B x V/c,  and employ coordinates ( p ,  8, z ) ,  where ii = -2 .  From Stokes’ theorem 

where @ ( p )  = 27~s: B,p’dp’ is the flux contained within radius p. For torsional 
motions assume v = p o ( p )  8. 

d 
Then dt (65) 

=-2f s  (A,.V)B,dS. 

Thus, the flow into Va is, from (63) and (64), 

This rEsult is what one would expect from the analysis of twist helicity given in $ 2 .  
The annulus with flux d@( p )  wraps around the flux inside w (  p) /2n times per second 
(compare with (12)). Note that right-handed vorticity twists the magnetic field above 
S with negative helicity. 

The analysis of circularly polarized waves is somewhat more complicated. Let 
B, = BoZ be uniform on S, and let the fluctuation fields be 

(68) B, = (2 + i j )  B, ei(kz-wt). 

V v=-- * B,. 
Bo 

Here V, is the AlfvBn velocity of the wave. For these fields 

- 2  fs dX (A,. 5)  B-ii = 0, 
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when integrated over either 8 or over one period (as A ,  is independent of time). This 
result must be regarded with caution because we have let B, be constant as p-f CO. 

Thus neither gauge invariance of the relative-helicity formalism nor special linkage 
properties a t  infinity can be assumed. One may note that the field lines of B,, + B,, 
which individually have helical shape, nevertheless do not wrap about each other. 
As the infinitely extending waves resemble ripples in unlinked field lines, i t  is 
reasonable to find zero net topological flow in the above calculation. 

The situation changes when we consider circularly polarized wave packets, finite in 
the 2- and 9-directions. Here B, = B,(x, y). The wave packets can be approximated 
by the divergence-free field 

where bfq) is the two-dimensional Fourier transform of B,(x, y). The condition 
V-B,  = 0 requires the addit,ion of a z-component to  the field. Note that B, satisfies 
the condition V x B, = kB, to first order in the ratio of wavelength to horizontal scale 
length of B,. We will assume that this ratio is very small, i.e. that 6(q) is sub- 
stantial only for q $ k. The z-component of B allows for field-line connections a t  
the boundaries of the wave packet, which were not manifest in the plane-wave 
calculation. 

Because the boundary function B,.fil,=, now has a z-component, A ,  will contain 
an oscillating part AP1. To obtain A,, a t  z = 0, note that AP1.2 = 0, and that 

The result is 

We can now compute the time average of (dldt) H R ( V u ) :  from (65) 

Here E = B, x V,/c. After some algebra, 

= 5 IB,(x, y)I2 dx dy. 
k (77) 

An analogous result is obtained for circularly polarized electromagnetic waves moving 
a t  the velocity c. These results (for finite wave packets) are consistent with the 
interpretation of circularly polarized waves as carrying a helicity density ( h )  = B:/k 
(Montgomery & Turner 1981 ; Matthaeus & Smith 1981). 

5. Conclusions 
Magnetic helicity has been shown to be closely associated with many aspects of 

the topological structure of the field. In  92 H has been classified into internal and 
external helicity, amd into contributions from twist number and writhing number. 



The topological properties of magnetic helicity 147 

The internal helicity arises from kinks and twist within a flux tube, whereas external 
helicity arises from knotting and linkage. Internal and external helicity are separately 
conserved in ideal MHD. In plasmas with high but finite magnetic Reynolds number, 
i t  has been conjectured (Taylor 1974) that reconnection of field lines can alter the 
field topology while approximately conserving H .  I n  this case, helicity can be 
transferred between external and internal sources. For example, two linked flux tubes 
with external helicity 2@ could reconnect into one tube with zero external helicity, 
but containing two extra units of internal helicity. Thus reconnection can be a source 
of twist for flux tubes (Berger 1982). 

Helicity was also related to  the twist number and writhing number of the field lines. 
The twist number measures the torsion ofa  line about the central axis of a flux tube, 
while the writhing number arises from the twisting, knotting, and linking of the 
central axes of flux tubes. 

Magnetic helicity is only gauge-invariant and topologically well-defined when 
integrated over a volume bounded by magnetic surfaces. However, a relative measure 
of the helicity of a simply connected volume with open field lines does exist. As shown 
in $3,  the relative contributions to the helicity of all space of two configurations with 
common extensions outside the volume does not depend upon details of the extension. 
A measure of the topological content of a volume can thus be obtained by comparing 
a given field with the corresponding potential field. This measure has been called 
relative helicity. Potential fields have a minimum of structure for the given boundary 
conditions. For example, if the boundary surface is a plane or a sphere, and potential 
fields are placed on either side of the boundary, the total helicity is zero. It is 
interesting to note that, for such boundaries, the sum of the relative helicities of the 
fields residing in the two subvolumes of space equals the helicity of the total field. 

The time derivative of relative helicity has a simple form (62) : a volume integral 
of E*B, plus a surface integral, The E* B term represents dissipation in plasmas with 
finite resistivity. In  high-magnetic-Reynolds-number plasmas, however, this term 
can often be considered negligible (Taylor 1974,1981 ; Berger 1984). The surface term 
provides a well-defined measure for the flow of topological structure into a subvolume 
of space. This measure has been shown to provide physically reasonable results for 
torsional motions on the boundary plane and for circularly polarized waves. 
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