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Solar magnetic fields.
History, tragedy or comedy?

Dr. Philip Judge (High Altitude Observatory)
National Center for Atmospheric Research, PO Box 3000, Boulder CO 80307-3000, USA

“Double, double, toil and trouble; Fire burn, and cauldron
bubble!” – Three Witches, MacBeth

Abstract

Many children know that the Sun sometimes has spots. Sunspots were
certainly known to ancient civilizations. Even so, it is sobering that we still
do not have a unique answer to the simple question:

“Why, according to the basic laws of physics, is the Sun obliged to form a sunspot?”
– E. N. Parker, ca. 1990 (paraphrased)

This chapter summarizes how magnetic fields make their presence known in
the spectra of solar plasmas, but the main purpose is to point to properties of
solar magnetic fields that are surprising from the point of view of elementary
physical ideas. These ideas include the physics behind the regeneration of
magnetic fields that appears to require “dynamo” action and magnetic field
dissipation, the role of magnetic field topology in highly conducting plasmas,
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and the energetic and dynamic effects of magnetic field rearrangement and
dissipation that lead to nearly all phenomena of interest to modern human
life. As a leitmotif, and in contrast to those who draw attention to obvious
complexities in the Sun’s magnetic field, I ask another question: Why does
the Sun’s magnetism show so much order in the presence of such chaos?

2.1 Introductory Remarks

When asked to review this subject for this Winter School, I confess to being
a little surprised, for there are many solar physicists more qualified than I,
owing to their particular areas of specialization, who can discuss both ob-
servations and theory relating to solar magnetism. In recent years I have
tried to understand the physical problems presented by modern solar ob-
servations, and have offered some short courses and lectures which attempt
to identify some elementary problems. By elementary, I do not mean “sim-
ple”, but rather those building blocks of a complex nonlinear system that a
graduate student in physics might understand and retain. To me, it seems
that modern solar physics boils down to one thing: the evolution of solar
magnetic fields. So, this chapter is going to be concerned with explaining
elementary aspects of the complex interaction of magnetic fields and plasma
in the Sun, from the point of view of Newton, and Maxwell.

Right off the bat, I draw attention to a curious but central issue, cap-
tured in one of the best and exquisite images yet obtained of a sunspot
(Figure 2.1). Sunspots exist in spite of the fact that 100% of the solar lu-
minosity is carried by turbulent convection that extends across the outer
30% of the solar interior. The topmost convective layer is seen clearly in
the figure as cellular structures outside the sunspot itself. Why is the Sun
obliged to produce such a thing, such order from chaos?

Sunspots exhibit order in many other ways. In the 1800s Schwabe found
that sunspots come and go cyclically with periods of 11 years. The mag-
netic nature of sunspots was discovered by Hale (1908), a decade or so after
Zeeman discovered the effect of magnetic fields on spectral line intensities.
Hale et al. (1919) later reported that sunspot magnetic fields change polar-
ity from one cycle to the next, so that the Sun exhibits a 22 year cycling
magnetic variation. Following the development of magnetohydrodynamics
(“MHD”, e.g. Alfven, 1950), sunspots are the most obvious manifestation of
a large scale MHD “dynamo”. Various datasets show that the Sun’s cycling
magnetism is not atypical when compared to stars. Armed with powerful
telescopes on the ground and in space and with recordings of solar mag-
netism encoded in paleo-climate records, we have many more observations
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Fig. 2.1. The mystery of sunspots is represented in this figure that appeared in
Sky and Telescope magazine on July 23 2003, an image from the Swedish Solar
Telescope, a project led by G. Scharmer. Neither the nature of the umbra (darkest
regions) nor penumbra (filamentary structures) is really understood, and the origin
of why the magnetic field should emerge in such a concentrated form remains a
mystery. The contrast between the large-scale order in the penumbral filament
patterns and the turbulent convection outside the sunspot is dramatic.

of solar magnetic fields, from time scales exceeding 104 years to less than 1
second.

In the 1930s and 1940s, the Sun continued to surprise us, when spec-
troscopy showed that the temperature of plasma above the visible surface
increases with distance from the Sun’s center. This was in apparent viola-
tion of the second law of thermodynamics, and so not to be taken lightly.
The obvious observational manifestation of this increased temperature is the
solar corona. There is of course no such violation- instead we must invoke
non-thermal processes for which thermodynamics does not apply, in con-
trast to the thermal modes of energy transport of radiative transport and
convection present in the Sun’s interior. In the latter half of 20th century,
scientists have trodden a rather tortuous path towards the conclusion that
the dissipation of energy associated with solar magnetism is intrically related
to the formation of a corona.
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Below we will look at the behavior of solar magnetism on large scales,
meaning global scales on the order of the solar radius R⊙, and those ∼ 0.01−
0.1R⊙ that are characteristic of sunspots and active regions. Accordingly we
will use the framework of MHD. This does not mean that we can ignore small
scales- quite the contrary, one characteristic of MHD (and hydrodynamics) is
the development of small scales and a dynamical coupling across all physical
scales. We speak of “turbulence”.

Figure 2.2 shows more “order from chaos”– namely the relatively well-
-organized thermal structure of the solar corona on global scales. In part
this results from the non-linear dependence of the energy loss due to electron
heat conduction on electron temperature (Rosner et al., 1978; Judge, 2002),
but nevertheless, the degree of order in such images is remarkable given that
the coronal heating mechanism is believed to occur on unobservably small
scales (section 2.7.3). Therefore, we have a puzzle: What is the origin of the
large scale order in the corona given that we know that dissipation occurs
on very small scales?

For velocity field u, in MHD the evolution of the solar magnetic field is
described by an “induction equation”, the simplest form of which is

∂B

∂t
= curl (u×B) + η∇2B, η = 1/µ0σ, (2.1)

where σ is a scalar electrical conductivity. This equation is readily derived
from Faraday’s Law and Ohm’s law – itself a combination of electron and
ion equations of motion undergoing collisions evaluated in the frame moving
with the plasma’s center of mass. The velocity field u of the Sun is observed
to contain large (rotation, circulation, solar wind) and small (convection,
turbulence, waves) scales.

First consider the second term in equation (2.1). Kinetic theory (Ohm’s
law) for collision dominated plasmas gives us values for the conductivity σ
(e.g. Braginskii, 1965), from which we find that η ∼ 104 cm2 s−1 in the
Sun’s interior. Choosing ℓ ∼ R⊙/3 = 2× 1010 cm we find that the diffusive
term in equation (2.1) has a time scale of ℓ2/η ∼ 109 years. Yet the Sun
exhibits magnetic variations many orders of magnitude faster. Next, note
that the equation appears linear in B, but this is misleading unless u is truly
independent of B. In real plasmas this is rarely the case since the plasma
experiences a Lorentz force (effect of j×B on u). MHD deals the coupling
of the induction equation (or more complex versions of it) with equations of
motion for the plasma in which u and B and other fluid variables (density,
pressure, temperature, . . . ) evolve together.

The Sun is the archetypal object for study under the “high magnetic
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Fig. 2.2. A three color image taken by the AIA instrument on the SDO spacecraft
on May 4 2010. The corona is not only well organized magnetically (Figure 2.15)
but also thermally, since this image shows blue regions (electron temperatures near
1 million K, 1MK), green (2 MK) and red regions (3 MK). Entire regions of the Sun
somehow know how to be at given temperatures that are very different from other
regions on the Sun. The dark features are coronal holes- regions of fast plasma
outflow.

Reynolds number” regime, RM = uℓ/η ≫ 1, where u and ℓ are charac-
teristic speeds and lengths of the motion of the fluid. In this regime the
first term of equation (2.1) dominates on large scales. In the limit of zero
diffusion η (the “ideal MHD” limit), tubes of magnetic flux are tied forever
to the the plasma that they entrain– “Alfvén’s theorem”. In this case the
behavior of the plasma and fields must obey not only equations of motion
but also an infinite number of topological constraints. It is a curious fact,
almost a poetic tragedy, that ideal MHD leads to its own demise (2.7.3). In
“natural” systems like the Sun, as opposed to idealized models with high
degrees of order, Parker (1972); Parker (1994) has argued that topological
constraints plus the equations of motion over-determine the solutions. The
system evolves by trying to form mathematical “tangential discontinuities”.
But even in the presence of very small but finite plasma resistivities, in try-
ing to become singular, the Maxwell stresses make steeper gradients until
ideal MHD causes its own demise- small scales ℓ develop that the second
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term in equation (2.1) eventually leads to non-ideal behavior. Shakespeare
might have written:

“Fair is foul, and foul is fair.” – Witches, Act I, scene I,
MacBeth

Here then are some central issues discussed below: In terms of the gen-
eration of magnetic fields, why is the Sun obliged to vary cyclically, flipping
the large scale fields every 11 years, and why must it appear most clearly
as a sunspot? In terms of the dissipation of magnetic field, why does every
solar-like star possess a corona, or chromosphere which is a partially ionized
region between the visible surface and corona? Why must flaring occur? I
will use some simple physical arguments to identify some cutting edge prob-
lems. I am guided by some recent arguments by Parker (2009) and Spruit
(2011). Pedagogical articles by Casini and Landi Degl’Innocenti (2008) and
Rempel (2009) are also recommended.

2.2 Solar magnetism: so what?

Sunspots are small enough, and the Sun bright enough, that the occasional
reports of them by ancient civilizations are of limited use. The first quantita-
tive measurements of sunspots really required the invention of the telescope
and the projection of solar images. Spots began to be counted in around
1610. It was not until 1908 that Hale proved that the spots were concen-
trations of strong magnetic fields, but his discovery meant that spots could
then be used to probe solar magnetism back to the early 1600s, the time of
Galileo.

Sunspots generally appear benign to the naked eye- so why should hu-
manity care about these most obvious manifestations of a varying magnetic
field on the Sun? The first rapid changes (minutes) seen in sunspots were
reported by Carrington (1859) in a complex group of sunspots, confirmed
independently by Hodgson. In the book by Young (1892), we find that this
phenomenon

“. . . was immediately followed by a magnetic storm of unusual intensity, the au-
roral displays being most magnificent on both sides of the Atlantic, and even in
Australia”.

Now, aurorae are accompanied by magnetic disturbances on the ground,
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affecting compasses. These disturbances occur because the changing mag-
netism on the Sun, which leads to flares including the one observed by
Carrington, produces high-energy radiative and particle disturbances at the
earth. In turn, these disturbances induce electrical currents in the earth’s
magnetosphere and ionosphere. In 1859, telegraph wires hundreds of miles
long were affected by currents along them induced through the changing
magnetic fields in the ionosphere, such that signals could be transmitted
with no applied EMF!

Fig. 2.3. Distributions of flares for the Sun in comparison with stars, modified from
Shibata et al. (2013) to include the “Carrington Event”. The solid histogram shows
the frequency distribution of superflares on G V -type stars with rotational period
> 10 d and effective temperatures of 5600–6000 K.

Towards the end of the 20th century it became clear that flares are also
associated with the large scale ejection of material in the magnetized corona,
“coronal mass ejections” (CMEs). In many flaring events, solar energetic
particles (vastly supra-thermal) are emitted by the evolving fields in the
corona, and via shocks in interplanetary space induced by CMEs. All of
these phenomena, driven by evolving solar magnetic fields, put at risk mod-
ern society, as we become more and more dependent on spacecraft flying in
the ionosphere, magnetosphere and in interplanetary space, and as our need
for electrical power ever increases. Power grids and satellites, are just the
most obvious “Achilles Heels” of our technological society. The huge geo-
magnetic effects of the “Carrington event” of 1859, (with energy estimated
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at ≈ 1032 erg by Shibata et al., 2013, probably a lower limit), suggest that
it is the largest flare recorded in history. The question arises as to how our
infrastructure might be affected by such a strong flare, given that plasma
ejection associated with smaller flares (X class between 11 and 13 March
1989) disrupted power transmission in Quebec. Given the spectacular au-
rorae that accompany such magnetic storms, a 20th century descendent of
MacBeth might conceivably have said

“So foul and fair a day I have not seen.” – MacBeth’s open-
ing line

Recent work combining stellar and solar data (Shibata et al., 2013, , see
Figure 2.3) allows us to estimate the rate of occurrence of flares of Carrington
amplitude and higher. Although solar data are based upon EUV and X-ray
data and stellar data are based upon visible wavelength photometry from
the Kepler satellite, Shibata et al. find that a flare of 100× the Carrington
energy is expected roughly once in 800 years.

We must therefore attempt to understand why the Sun, in particular its
magnetism, behaves as it does.

2.3 Measuring solar magnetic fields

2.3.1 Remote sensing

This section draws on the pedagogical article by Casini and Landi Degl’-
Innocenti (2008), another very nice article is that of Lites (2000) with sev-
eral examples of solar measurements. Determining physical properties in
solar plasmas is an exercise in “remote sensing”. In astronomy, the origin of
remote sensing is traced to Kirchhoff and Bunsen (1860) who identified spec-
tral lines in the laboratory which coincided with Fraunhofer’s dark lines in
the solar spectrum recorded some 4 decades earlier. “Plasma spectroscopy”
in fact began the modern era of astrophysics, it remains a primary tool
– without it we would know little about the universe. Spectra of atoms,
molecules and ions embedded in plasmas emit and absorb photons in a
manner that encodes conditions in the plasma and any electric and mag-
netic fields threading the plasma. Simple examples are bulk flows of plasma
reflected by Doppler shifts of the spectrum (expansion of the universe), tem-
peratures of stellar atmospheres are reflected in the relative strengths of lines
belonging to molecules, neutral atoms or ions. Curiously, after Fraunhofer’s



Solar magnetic fields. History, tragedy or comedy? 15

work but before that of Kirchhoff & Bunsen, philosopher Auguste Comte
(1835) wrote

“On the subject of stars. . . we shall never be able by any means to study their
chemical composition. . . or even their density. . . I regard any notion concerning
the true mean temperature of the various stars as forever denied to us.”

I cannot resist the following quote

“. . .But swords I smile at, weapons laugh to scorn, Bran-
dish’d by man that’s of a woman born.” – MacBeth

Compte’s “weapons”, a tragic, perhaps comedic prediction of the future,
serve as a warning to those of “us of a woman born” who try to predict the
future of science. (MacBeth, however, is killed quickly after these words by
MacDuff, not “born” of woman but delivered by cesarian section).

The effects of magnetic fields in spectra of astronomical plasmas are gen-
erally more subtle, because bright objects are usually hot and so spectral
lines are broadened by thermal motions. Only when magnetic fields are
strong can one use spectroscopy alone. More generally, one must also use
“plasma polarization spectroscopy” because the magnetic fields are weaker.
Magnetic fields break symmetries in current-carrying systems such as atoms,
so it is not surprising that magnetically-induced atomic polarization leads
to polarized spectra.

Spectral line polarization originates in plasmas in essentially two ways
(from Casini and Landi Degl’Innocenti, 2008): Firstly, magnetic substates
may be unevenly populated, so the transition components† (JM → J ′M ′) no
longer combine with the particular weights (natural populations) needed for
the total polarization to vanish, such as in local thermodynamic equilibrium
(LTE). Unequal populations occur when atomic excitation/de-excitation
processes are anisotropic. Secondly, even with atomic substates populated
naturally, the substates may be separated in energy, so that a spectral anal-
ysis of atomic transitions reveals varying polarization properties with wave-
length. This second case is most familiar to solar physicists, leading to the
Zeeman and Stark effects.

The two sources of polarized spectral lines are not mutually exclusive.
Hanle (1924) experimented with anisotropically excited atoms in the pres-

† Here, J is the total angular momentum quantum number, M the projection of this quantum
number on to a particular axis, such as along a magnetic vector B.
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ence of magnetic fields, finding that magnetic fields can modify the zero-field
polarization with field strengths far below those necessary to produce visible
energy separations via the Zeeman effect. Such modifications are referred
to as the Hanle effect.

Fig. 2.4. Typical configuration of a polarimeter. Different polarization states of the
radiation passing through the instrument are measured by suitable combinations
of the retarder and polarizer position angles, α and β. From Casini and Landi
Degl’Innocenti (2008).

2.3.2 Measuring polarization of light

Polarization of light is mathematically specified by the two complex Carte-
sian components, Ex and Ey of the radiation electric field with wave-vector
along the z axis. In a physical description a coherency matrix (or polariza-
tion tensor) of the radiation field (averaged over the acquisition time and
elemental surface of the light detector) is specified,

C =

(

⟨E∗
xEx⟩ ⟨E∗

xEy⟩
⟨E∗

yEx⟩ ⟨E∗
yEy⟩

)

≡
1

2

(

I+Q U−iV
U+iV I−Q

)

(2.2)

so that four independent parameters are needed in order to describe po-
larized radiation, either in terms of the electric fields or equivalently the
Stokes parameters, I,Q, U, V (Casini and Landi Degl’Innocenti, 2008). Ob-
servationally, it is customary use the four (real) Stokes parameters: I is the
intensity, Q and U are the two independent parameters needed to describe
linear polarization on the x − y plane, and V is the circular-polarization
parameter. Casini and Landi Degl’Innocenti (2008) adopt an operational
definition for measuring polarization of light in terms of an ideal instru-



Solar magnetic fields. History, tragedy or comedy? 17

ment, consisting of a linear polarizer and retarder (Figure 2.4). A retarder
introduces a phase difference between orthogonal directions of polarization,
examples being calcite crystals with different refractive indices for light with
electric vectors along and perpendicular to certain directions (birefringence).
For a λ/4 retarder, this “polarimeter” registers counts on a detector as
functions of angles α and β between the retarder’s fast axis, the polarizer’s
acceptance axis, and a reference direction as:

S(α,β) = k [I + (Q cos 2α+ U sin 2α) cos 2(β − α) + V sin 2(β − α)] (2.3)

where k is a factor that includes detector gain, flat field etc. corrections. A
sequence of measurements of S(α,β) with α and β varying with time can be
used to determine I,Q, U, V with suitable choices of α and β. This involves
a 4 × 4 matrix inversion coupling all four Stokes parameters. The needed
sequence of observations is called “polarization modulation”.

Several factors are critical in making accurate polarimetric measurements.

• Frequently, Q,U, V are significantly smaller than I, sometimes by orders
of magnitude.

• Since complete measurements of all four Stokes parameters requires at
least four measurements, sequential in time in most polarimeters, any
(spurious) time variations can lead to measurement errors. Such errors
include crosstalk, in which, say, variations in Q entering the polarimeter
from the telescope feed, due to non-solar sources induce spurious signals
in, say U .

• A large source of error and crosstalk includes atmospheric seeing (e.g.
Lites, 1987). Space polarimeters, such as the SP instrument (Lites et al.,
2001) on the Hinode spacecraft, avoid seeing problems (but do have some
spacecraft jitter).

• In observations affected by seeing, I → Q,U, V crosstalk often dominates.
The solution is then to split the beam, with suitable choices of β − α, to
measure effectively I+aQ+bU+cV and I−aQ−bU−cV simultaneously.
This yields an 8× 4 matrix inversion (Seagraves and Elmore, 1994) or it’s
algebraic equivalent. The Hinode SP instrument in space has a dual beam
capability, but results obtained with one beam are of comparable quality,
as one might expect (Lites private communication, ca. 2009).

• The polarimeter measures only the state of polarized light entering the
instrument. If the telescope is “polarizing”, in the sense that it changes
the incoming Stokes array I,Q, U, V via off-axis asymmetries for example,
via a matrix T, then this matrix must be determined (a “polarization
calibration” is required) and then inverted.
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Sometimes we need to measure very small polarizations, say 10−4I, to
determine magnetic fields in the Sun. Such measurements are extremely
difficult to perform, but there are ways around them, such as by modula-
tion/demodulation at frequencies far above any frequency induced by seeing
or other factors. The ZIMPOL instrument does this with a combination of
piezo-electric modulation by crystals and by charge caching detectors (e.g.
Gandorfer and Povel, 1997).

2.3.3 The Sun is not always bright enough for polarimetry

It should be recognized that spectropolarimetry at high angular resolution
actually is a photon starved exercise. This surprising conclusion has been
re-emphasized by Landi Degl’Innocenti (2013). At the diffraction limit of
any telescope, with θDL = 1.22λ/D the flux density fDL of photons is inde-
pendent of telescope aperture D because

fDL = Iπθ2DL = Iπ(1.22λ/D)2 (2.4)

per unit area, where I is the solar disk intensity and we have assumed the
flux is contained in one Airy disk. The total photon flux per detector pixel is
πD2/2 times this and independent of D. Using reasonable values for system
efficiency, spectral resolution, wavelength, Landi Degl’Innocenti finds that
one can accumulate only 106 photons per second per pixel, meaning that 100s
integrations are needed to achieve a statistical sensitivity of 10−4. While not
a problem for stars, the diffraction limit of large solar telescopes corresponds
to tens of km at the solar surface, in 100s the Sun’s atmosphere can change
dramatically on such scales. Trade-offs must be made by a judicious selection
of angular resolution, wavelength, instrumental throughput, even with 4m
class telescopes.

Lastly, even with great care, it should be pointed out that systematic
sources of error (fringes, crosstalk, calibration errors) generally dominate po-
larization measurements at high sensitivities. Spectropolarimetry presents
interesting challenges.

“. . . that is a step on which I must fall down, or else o’erleap,
for in my way it lies.” – MacBeth
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2.3.4 Zeeman effect

The Zeeman splitting of atomic sub-levels is hνL ∼ µBB, where νL is the
Larmor frequency, µB is the Bohr magneton. The radiation emitted or
absorbed by the associated “σ” (∆M = ±1 and “π” (∆M = 0) radiative
components then depends on the magnitude and direction of the magnetic
field vector. Requiring polarizations in excess of a few percent in most
instruments, then, as we will see below, this means νL/∆ν ∼> 2 × 10−2,
where ∆ν is the characteristic line width. In the Sun’s photosphere, Doppler
broadening is usually dominant, with a value of a few km s−1, ∼ 10−5c.
Translated into frequency units, we find that the Zeeman effect is useful for
magnetic fields of order

νL ∼
µBB

h ∼> 2× 10−210−5 c

λ0
(2.5)

B ∼> 90
5000Å

λ
G. (2.6)

Figure 2.5 shows the “classical” analog for the Zeeman effect which applies
to J = 0 → J = 1 transitions, from Lites (2000).

Fig. 2.5. The classical analog of the Zeeman effect an an atomic system represented
by classical oscillators. An atom absorbs a little of the incoming continuum light
(from the left) with the magnetic field aligned along the z and x axes respectively,
showing the longitudinal (top) and transverse (bottom) Zeeman effect. From Lites
(2000).

In the upper panel of the figure (longitudinal Zeeman effect), the cir-
cularly orbiting oscillators are seen “face on” so that they emit circularly
polarized light in the observer’s direction. Conversely, in the lower panel,
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the oscillators are seen “edge on” so that they emit linearly polarized light.
Due to symmetry, the “red” and “blue” shifted components are of the same
amplitude, and they are shifted in frequency by the Larmor frequency of the
atomic level νL in both cases.

In the longitudinal-field case, a difference in measurement of left versus
right circularly polarized light (this is the definition of Stokes V ) will reveal
the V polarized profile as shown. The I profile shown is “fully split”, i.e.
Zeeman splitting exceeds line broadening from the plasma (thermal, bulk
motions, collisions), and is symmetric. In the limit that the Zeeman splitting
is small, the Stokes I profile is merely broadened a little - the two absorption
features σR, σL in I in Figure 2.5 being blended into one feature. However,
the Stokes V profile then survives with an amplitude which is proportional
to the longitudinal field strength, as shown below.

Figure 2.6 shows profiles measured by the Advanced Stokes Polarimeter.
The profiles shown are most readily understood using the excellent pedagog-
ical article of Jeffries et al. (1989) which focuses on the transport of polarized
radiation through an atmosphere. These authors first derive emission and
absorption coefficients for light passing through electrons bound to atoms
and ions using equations of motion and dielectric theory, in the presence of
arbitrarily oriented magnetic fields. The absorption and emission processes
are assumed uncorrelated, such as occurs in thermal equilibrium and LTE,
and the processes of damping and Larmor precession are assumed far smaller
than the “resonance frequency” (i.e. frequency of the line radiation, ∼ 1015

Hz). They then derive the equations of radiation transport and solutions
for simple cases. Jeffries et al. discuss in particular the “weak field limit”
(Larmor frequency νL much smaller than the combined Doppler and natural
widths ∆ν of the lines). Their equations (45) and (47), consistency relations
related to their transfer equations, readily explain the Q,U, V profiles seen
in figure 2.6: the emergent Stokes V profile is a term that is first order in
νL/∆ν, proportional to the first derivative of the intensity profile and so
asymmetric around line center. The QU profiles are second order terms and
are symmetric about line center.

This different behavior originates from the dependence of the emitted
dipolar radiation on the quantum numbers αJM → α′J ′M ′ of the atomic
transitions (refer to Figure 2.5). When ∆M = ±1, labeled “σ” transitions,
the atom emits or absorbs left- and right- circularly polarized light, the
radiative transitions being shifted in frequency by ±νL. When νL/∆ν ≪ 1,
we can use a first order expansion of the (left - right) polarization states
in frequency or wavelength, yielding V ∝ νLφ′ where φ′ = dφ/dν. For
the ∆M = 0 “π” transitions, the atom emits or absorbs linearly polarized
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light unshifted in frequency. Unlike Stokes V , the linear polarization (Stokes
Q,U) measurements “see” both the σ and π components. When the substate
populations are equal (LTE), since they occur in the combination π−(σ+1+
σ−1)/2, the leading order term is second order in νL/∆ν, therefore yielding
a frequency dependence ∝ φ′′.

In the work of Jeffries et al. (1989), the Zeeman effect is imprinted in
the outward directed solar IQUV parameters through a matrix transport
equation for the array (I,Q, U, V ) in which a 4×4 matrix of absorption and
emission coefficients contains the appropriate Zeeman wavelength shifts and
polarization states. Taking account of the geometry, Jeffries and colleagues
present solutions to the simplest radiative transfer equation applicable to
photospheric lines, the assumption that the source function varies with (con-
tinuum) optical depth τ as S(τ) = B0+B1τ . Ignoring, for tutorial purposes,
complications due to “magneto-optical effects†”, we can write their equation
(39) for the emergent Stokes parameters at any particular frequency as

I ≈ B0 +
µB1

∆
(1 + ηI)

3 (2.7)

Q,U, V ≈ −
µB1

∆
(1 + ηI)

2ηQ,U,V (2.8)

where the ηi = κi/κC are ratios of the line’s Stokes component i absorption
coefficient to that of the continuum κC (their equations 28 ignoring the
primed MO terms):

ηI = κC
1

2

[(

κr + κl
2

)

(1 + cos2 γ) + κp sin
2 γ

]

(2.9)

ηQ = κC
1

2

(

κp −
κr + κl

2

)

sin2 γ cos 2χ (2.10)

ηU = κC
1

2

(

κp −
κr + κl

2

)

sin2 γ sin 2χ (2.11)

ηV = κC

(

κr − κl
2

)

cos γ (2.12)

Here, γ and χ are angles that magnetic fields make with the line of sight
and on the plane of the sky defined according to the reference direction
(Figure 2.4). Note that the azimuthal angle χ occurs only through a sine
and cosine function of 2χ, thus the azimuth is determined by observations
of Q,U only to within 180◦. This is the “azimuthal ambiguity”. These

† MO effects arise from phase changes introduced by non-unit real parts of the refractive index
in the dielectric theory. In the notation of Jeffries et al. the MO effects are contained in
the quantities having have a “prime” superscript in their standard transfer equation (35) and
subsequently in their variable ϱ. MO effects are negligible in the weak field limit.
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equations show algebraically the combinations of energetically shifted left-
(κl), right- (κr) σ components, and the unshifted π component κp which
lead immediately to the profiles seen in Figure 2.5. The Q,U terms are of
the form 2 × π component minus the sum of the σ components: this is a
difference equation for the second derivative; the V term is simply the first
difference between the σ components.

Fig. 2.6. Spectropolarimetric line profiles of a sunspot with polarization generated
by the Zeeman effect. The upper panel shows the position of the slit on a continuum
image, other panels show Stokes profiles as a function of wavelength (abscissa) and
position along the slit. The two broad dark vertical lines are a pair of 630 nm
lines of Fe I, they show Zeeman splitting in I and also V over the sunspot umbra
and penumbra. Away from the sunspot the Stokes QUV profiles are similar, being
formed in the “weak field limit” (see text). From Lites (2000).
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In the “weak field limit”, magnetic information is contained only in the
amplitudes of the Stokes profiles, and angular factors, the Q,U, V profile
shapes being set by derivatives of I. It is not possible to discriminate be-
tween two configurations containing the same net magnetic flux per unit
area unless additional measurements from, e.g., a line formed outside the
weak field regime, are available. In the weak field limit the Zeeman effect
merely measures the magnetic flux density (Maxwells per square cm) not
the magnetic field strength (Gauss).

Lastly, it is worth emphasizing that because Zeeman-induced linear po-
larization is usually small, the bulk of the literature, indeed almost the
entire literature that deals with global fields, is based upon circularly polar-
ized data from the longitudinal Zeeman effect. Such measurements, called
“longitudinal magnetograms”, measure only the net line of sight field com-
ponent of B. Regular observations began in the 1950s after the invention of
the scanning magnetograph (Babcock and Babcock, 1952; Babcock, 1953).
With the advent of the SOLIS ground-based instrument and HMI instru-
ment SDO, “vector magnetograms” (using linear and circular polarization
measurements) are becoming more commonplace.

2.3.5 Hanle effect

Above, we found that the Zeeman effect requires field strengths in excess of a
few tens of G, the polarized light depending on the ratio of Larmor frequency
to Doppler width frequency. In the Hanle effect the relevant parameter is
the product

2πνLA
−1 ∼ 1 (2.13)

with A the spontaneous decay rate of an atomic level. An atom in a given
state with a net magnetic moment µ gyrates around magnetic field lines
with frequency νL = µB/h. If 2πνLA−1 ∼ 1, line photons are emitted
while the atom’s azimuthal angle around the magnetic field changes by one
radian. In the vector model of the atom an initially polarized state will lose
some “memory” of its initial direction, the emission will be rotated and
the magnitude of polarization reduced, since radiative decay is a stochastic
process obeying a distribution of lifetimes ∝ exp(−tA).

The Hanle effect is sensitive to weaker magnetic fields than the Zeeman
effect. For electric dipole transitions in neutral species, A ∼ 108 s−1 for
a spectral line at λ0 = 5000 Å. Then, with ν0 = 6 × 1014 Hz, we have
A/ν0 ∼ 1.6×10−7. If we allow for rotation of ∼ 0.1 radians to be detectable,
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then the Hanle effect is sensitive to magnetic fields when

νL ∼
0.1 → 1

2πA
, or (2.14)

B ∼ 1 → 10 G, (permitted lines of neutrals). (2.15)

The Hanle effect merely alters existing polarization, its use in solar mag-
netic field measurements is related to spectral lines which are polarized by
other processes, most commonly by excitation by radiation fields that are
anisotropic. This is explicitly then a non-LTE phenomenon since LTE im-
plies detailed balance, isotropic excitation in particular. Unlike the Zeeman
effect, Hanle rotation and depolarization is additive, no matter the sign
of magnetic field. Therefore it is suited to detection of randomly oriented
fields. In this context Kleint et al. (2010) used the Hanle effect to inves-
tigate small-scale, disordered magnetic fields in the quiet Sun using lines
sensitive to magnetic fields formed near the solar limb. Their results, shown
in Figure 2.7, show no significant variations around 5 G between 2000 and
2010. In contrast, Zeeman measurements of solar magnetic fields associated
with sunspots amount to average field strengths between 4 Mx cm−2 and 20
Mx cm−2 (Schrijver and Harvey, 1989) over the sunspot cycle.

Fig. 2.7. Field strengths measured from the Hanle effect over a decade, near the
limb of the quiet Sun from Kleint et al. (2010). In contrast, the inset shows sunspot
numbers from 1999 to the present, varying by a factor of 10-100 over the same
period!

The reader should refer to Casini and Landi Degl’Innocenti (2008) for an
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accessible pedagogical text on the (far more complex) quantal treatment of
the Hanle effect.

2.3.6 Natural systems as recorders of solar magnetism

The large scale (several AU) solar magnetic fields influence the earth by
modulating the incoming flux of cosmic rays, see McCracken et al. (2013) for
a recent review. Radionuclides 10Be and 14C are produced in the atmosphere
and sequestered in polar ice and tree rings. Neutrons are also created by
cosmic ray interactions with Earth’s atmosphere. Neutron fluxes show a
clear 22 year modulation of a fundamental 11 year cycle as measured over
the past 60+ years (e.g. Beer et al., 2012). Taken together, this has allowed
scientists to infer a “solar modulation” function for the past 10,000 years.
The function, an indirect measure of heliospheric magnetic fields, is based
upon theoretical models of cosmic ray transport (Parker, 1965).

As shown by McCracken et al. (2013), the independent 10Be and 14C
records are mutually consistent over the past 10,000 years (the “holocene”).
Figure 2.8 shows Fourier amplitudes of the 10Be time series reported by
McCracken and colleagues. The large-scale (heliospheric) solar magnetic
field appears to show a quasi-periodic behavior on time scales between 50
and 10,000 years.

That earth is a detector of solar influences should be no surprise, the ra-
dionuclide traces of galactic cosmic ray modulation are one interesting exam-
ple. The earth responds to solar radiation and particles: aurorae caused by
electromagnetic perturbations from solar charged particles (Birkeland and
Muir, 1908) influence the magnetosphere, and are correlated with sunspot
activity. Indeed Eddy (1976) cited the lack of aurorae in support of the
reality of the Maunder Minimum in sunspots. The mere existence of an
ionosphere and upper atmospheric ozone prompted Saha (1937) to conclude
that the Sun must emit excess UV radiation before the conclusive evidence
of a hot corona (Grotrian, 1939; Edlén, 1943).

2.4 The observational record

B.C. Low, a theoretician who studies physical and mathematical proper-
ties of the MHD equations, often reminds us that “solar physics is an
observationally-driven science”. I believe he means that, even in the case
of the simplest theoretical model for coupled magnetic fields and plasmas
– the MHD picture – the non-linear coupling between the governing equa-
tions admit such a broad variety of solutions, that we must be guided by
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Fig. 2.8. Fourier amplitude spectrum of the 10Be data ice core data versus fre-
quency, for periods between 50 and a few thousand years, taken from McCracken
et al. (2013). Periods corresponding to the major peaks are annotated in years.

observations. Indeed, the justification for our new facilities, such as the
Advanced Technology Solar Telescope, the first major facility for ground-
-based solar physics for the United States in almost 50 years, is to be able
to study the non-linear interactions between plasma and (electro-) magnetic
fields threading them, on scales inaccessible to laboratories. So here I review
landmark observations in a historical context.

2.4.1 Early hints of variable solar magnetism

Fig 36. of the book by Young (1892) shows spectra from 1870 of Fraunhofer’s
D lines. The figure is clearly recognizable today as a typical case of spectral
lines split by magnetic fields- the Zeeman effect - but because the nature
of sunspots was not known until much later these data were interpreted in
terms of earlier work showing reversals in chromospheric lines- i.e. the origin
of the reversal was interpreted as thermodynamic, not magnetic. During the
1878 total eclipse, during a deep minimum in sunspot number, it was noted
that the corona appeared to trace magnetic lines of force.

From 1610 sunspots have been recorded essentially daily. While the data
are from heterogeneous sources, several properties of sunspot numbers are
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Fig. 2.9. The historical record of sunspot numbers is shown along with some char-
acters discussed in the text. The asterisk at 1859 marks the “Carrington Event”.
From left, there is Shakespeare, Newton, Carrington (lower) Maxwell, Alfvén.
Widths of the images corresponds to life spans.

robust. Figure 2.9 shows sunspot numbers as compiled by David Hath-
away†. After 17 years of observations, Schwabe (1844) discovered the cyclic
increase and decrease of sunspot numbers. In 1852, Sabine reported that
the sunspot cycle period was “absolutely identical” to that of geomagnetic
activity, Young (1892) shows data from 1772 to 1880.

2.4.2 Large-scale properties of solar magnetic fields

Here I offer selected observations of relevance of the origin and dissipation of
solar magnetic fields, some of these are already evident in Figure 2.10, show-
ing surface magnetic fields as measured using longitudinal magnetographs.
I follow lines of argument from Parker (2009); Spruit (2011):

• spots - compact regions of high field strength - are the most obvious
signature (Hale, 1908)

• spots emerge only below latitudes of 30◦, their distribution of latitude
with time follows the “butterfly wing” pattern as spots emerge closer to
the equator with time Maunder (1904, reporting on work with wife Annie)

• leading polarities of spots emerge closer to the equator than following
polarity, this “tilt” is larger the further spots emerge from the equator
(“Joy’s law”, Hale et al., 1919)

† This is a version of http://solarscience.msfc.nasa.gov/images/ssn yearly.jpg.
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Fig. 2.10. A magnetic butterfly diagram constructed from the radial magnetic field
obtained from instruments on Kitt Peak and SOHO. This illustrates Hale’s polarity
laws, Joy’s tilt law, polar field reversals in relation to sunspots, and the apparent
transport of magnetic field toward the poles. From Hathaway (2010).

• a 22 year magnetic cycle dominates (Hale et al., 1919) but includes some
stochasticity

• the large-scale (dipole, quadrupole) components vary on a 22 year cycle,
somewhat out of phase with the spots (Babcock, 1961)

• brightness variations alone vary with a dominant 11 year period and a
∼ 26 day rotational period

• spot emergence in N and S hemispheres are not necessarily in phase
• at least one period occurred where sunspots almost disappeared over 70

years (the Maunder Minimum, Eddy, 1976)
• large-scale (heliospheric) fields show stochastic and periodic magnetic

variability over the last few thousand years (2.8) as recorded in 10Be and
10C radionuclide data and correlated with neutron monitor data (Mc-
Cracken et al., 2013)

• spots often re-emerge at specific longitudes
• the Sun’s 11 year brightness variations resemble a “cycling” class of simi-

lar, slowly rotating G stars, (Baliunas et al., 1995; Judge and Thompson,
2012), although roughly as many stars do not show cycling activity as do
on decadal time scales (Figure 2.11)

McCracken et al. (2013, and references in the paper) draw further conclu-
sions from sunspot and radionuclide studies over the past 600 yr:

• “The Hale 22 year cycle of solar magnetism, and the heliospheric counterpart,
continued throughout the Spoerer and Maunder Minima, and
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Fig. 2.11. A selection of sun-like stars from the study of Baliunas et al. (1995),
showing the “Ca II H index” versus time. The solar index varies as shown in the
lower left hand panel, in phase with sunspots, the index is therefore a “proxy”
for sunspot-like activity on sun-like stars. Roughly as many stars show “cycling”
behavior as do not.

• The amplitude of the 24/12-yr modulation of the paleo-cosmic ray record for the
Spoerer Grand Minimum implies a . . . [factor] 0.5–2.5 variation in the helio-
spheric magnetic field near Earth.”

The continued cycling behavior of the Sun through the Maunder Minimum
is hinted at already by the sunspot study of Ribes and Nesme-Ribes (1993).
Further characteristics of the evolving solar magnetic field on the surface
and in the interior have been reviewed by Hathaway (2010), from which
Figure 2.10 is taken. While an obvious point, it must always be remembered
that such figures reveal magnetic field patterns evolving both through and
across a 2D surface of a 3D system. Care must be taken in interpreting such
data only in terms of dynamics across a 2D surface.

2.4.3 Smaller scales, sunspots, flares and CMEs

Spruit (2011) has emphasized more local aspects of sunspots. Spots emerge
first by exhibiting fragmented surface magnetic fields with mixed polari-
ties. From this, clumps of opposite polarity then form and diverge without
influence by convection. Spruit continues

“This striking behavior is the opposite of diffusion. To force it into a diffusion
picture, one would have to reverse the arrow of time. Instead of opposite polarities
decaying by diffusing into each other, they segregate out from a mix. The MHD
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equations are completely symmetric with respect to the sign of the magnetic field,
however. There are no flows (no matter how complex) that can separate fields of
different signs out of a mixture. This rules out a priori all models attempting to
explain the formation of sunspots and active regions by turbulent diffusion. . . The
observations. . . demonstrate that the orientation and location of the polarities seen
in an active region must already be have been present in the initial conditions: in
the layers below the surface from which the magnetic field traveled to the surface.”

These and other observations of Spruit are discussed in Section 2.6.1
Spruit then argues that models of dynamo action based upon cyclonic

turbulence (originating with the ideas of Parker, 1955) cannot lie at the
heart of the solar dynamo. Simply put, how can small-scale turbulence
cause the intense, clumped tubes of sunspot flux?

Solar flares mostly (but not always!) originate in the neighborhood of
sunspots. Following the development of MHD in the 1940s and 1950s (sec-
tion 2.5), it was realized, through a process of elimination, that the sudden
release of 1032 ergs of energy in a few minutes implies the storage and re-
lease of magnetic free energy in tenuous regions of the Sun’s atmosphere- the
corona. The best introduction to this problem I have found is “The Physics
of Solar Flares”, proceedings of AAS-NASA Symposium, editors Wilmot N.
Hess, ed., NASA SP-50 1964.

2.4.4 Summary of observed properties

Somehow, the solar plasma/magnetic field interactions:

• induce global solar variability to time scales of 11 yr and (much) less,
compared with a 105 yr Kelvin-Helmholz time scale,

• introduce highly variable high energy tails to the distributions of photons
and particles,

• produce order out of chaos

As noted by Parker (1955), the order must arise because the Sun rotates.
The way this happens remains an active research area (Parker, 2009; Spruit,
2011). Again, appealing to stellar behavior proves fruitful- Figure 2.12, from
Noyes et al. (1984), shows that the Sun lies squarely in the activity levels
expected in an ensemble of solar-like stars. This plot has on the abscissa
the ratio of rotation period to convective turnover time, the inverse of the
Rossby number, to be discussed further below.
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Fig. 2.12. A scatter plot of an activity index (in this case not the S index but the
more physical R′

HK) versus rotation period/ convective turnover time, the inverse
of the Rossby number, figure 8 from Noyes et al. (1984).

2.5 Magnetohydrodynamics

The essential ideas behind MHD as a description of plasmas and the elec-
tromagnetic fields are firstly, the usual continuum approach is valid for the
plasma (many particles in each phase element), imposing a lower limit to the
scales at which MHD applies. Even at the low densities of the corona, ∼ 108

particles per cm3, this lower limit is less one cm. Second, the plasma is quasi-
neutral (electrons move quickly to eliminate any electric field on macroscopic
scales). Third, we neglect Maxwell’s displacement current, which implies
that plasma evolution occurs slower than the light crossing time t ∼ ℓ/c for
the plasma (R⊙/c ∼ 2 s). Fourth, in the case of “single fluid” MHD, col-
lisions relax different particles (atoms, ions, electrons) on timescales short
compared with dynamics, we deal with densities ρ, pressures p which are
sums over all constituents, which are all described by single fluid velocity u
and temperature T †.

Another central aspect of MHD is not often appreciated (B.C. Low 2012,
personal communication). Einstein (1905) boldly relaxed the Galilean trans-
formations at the root of Newton’s laws of motion in order to reconcile the

† (Parker, 2007, section 8.1) points out that continuum approximations often apply even in
collisionless regimes since collisions conserve mass and momentum. Some of the fluid equations
are still valid even in collisionless plasmas, when care is take of higher order quantities such as
the pressure tensor!
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laws with Maxwell’s equations and to account for the experimental results
of Michelson and Morley (1887). Partly reversing Einstein’s work, Alfvén in
the 1940s (Alfven, 1950) formulated MHD within the Galilean/Newtonian
framework, but keeping Einstein’s relativistic transformations to O(v/c).
The Bard might have remarked

“What’s done cannot be undone.” – Lady MacBeth

but then Shakespeare preceded Newton and the notion of physical approxi-
mations. The electric field E, magnetic field B, charge density ρ and current
density j transform from rest frame to one moving with velocity u to O(u/v)
as, e.g. Ferraro and Plumpton (1966)

E′ ≈ E+ u×B; B′ ≈ B,

ρ′ ≈ ρ; j′ ≈ j.

To O(u/c), E is frame-dependent, but we can speak of B, j and ρ without
specifying the frame of reference.

To arrive at the standard MHD equations we add Maxwell’s equations,
which have source terms ρ and j. On scales larger than (usually small) Debye
radii rD, the charge density npe−nee scale with exp−r/rD (here n refers to
particle number densities). However, we cannot neglect macroscopic electric
currents j, which arise from small (but finite) differences in flow speeds of
the electron and ion fluids. Braginskii (1965) derives equations of motion
for electrons and ions in plasmas leads to the current density j′, neglecting
electron inertia†. For simplicity assume a hydrogen plasma which consists
only of protons (p) and electrons (e) with charge +e, −e. Then in terms
of any residual macroscopic electric field (to be determined) the electron
equation of motion reduces to

j′ = ne(up − ue) = σE′; σ ≈
e2neτe
me

, (2.16)

where up ue are proton and electron fluid velocities, and τe is the “electron
collision time”. This equation is generically called “Ohm’s law”.

We also eliminate j using j = σE+ u×B to arrive at equations written

† Electrons are assumed light enough that their momentum changes essentially instantaneously,
compared with other terms in the momentum equation for electrons. The inertial term then
drops out of the equation.
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in terms of u, B σ with no explicit appearance of j or E. The equations are
(Rempel, 2009)

∂ρ

∂t
= −∇ · (ρu) (2.17)

ρ
∂u

∂t
= −ρ(u · grad )u− grad p+ ρg +

1

µ0
(curlB)×B+∇ · τ(2.18)

ρ
∂e

∂t
= −ρ(u · grad )e− p∇ · u+∇ · (κgradT ) +Qν +Qη (2.19)

∂B

∂t
= curl (u×B− η curlB) . (2.20)

Here, τ is a viscosity tensor, Qν and Qη are additions to the thermal energy
e from viscous and Joule heating (collisions between particles in the kinetic
picture). MHD problems involve the solution of coupled partial differential
equations for unknowns ρ, u, e, B, given an equation of state (relating tem-
perature T , ρ,e, pressure p) and various additional relations written in terms
of these variables needed to close the system (expressions for pressure and
heat flux tensors, conductivity, various source and sink terms such as radia-
tive or convective gains or losses, even ionization). The equations themselves
are non-linear, the equation of motion containing the advection term u ·∇ρu
and the Lorentz force curlB×B/µ0, and the induction equation containing
curl (u×B), from the frame transformation.

2.6 Magnetic field (re-) generation

There are (at least) two major challenges in modern solar physics: (1) what
causes the global regeneration of large-scale magnetic field with a period
of ≈ 22 years, (2) why must the magnetic field appear most prominently
in spots? In this section, I draw some essential points from the review by
Rempel (2009) about the first question.

Dynamo theory studies conditions under which a velocity field of a highly
conducting fluid can sustain a magnetic field against Ohmic decay. Rempel
adopts “dynamo” to mean a system that has a magnetic energy that does
not approach zero as time t → ∞, owing to current systems occurring en-
tirely within a finite volume. In the absence of induction effects, magnetic
fields decay on a timescale τd = L2/η, for the Sun this is ∼ 109 years, us-
ing kinetic values for conductivity (equation 2.16). The Sun is ∼ 4.5 × 109

years old, so the mere existence of magnetic field does not by itself require
dynamo action, but the observed 22 year cycling behavior show that some-
thing other than diffusion is going on. (Rempel, 2009 notes that at least one
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alternative mechanism has been proposed, but these are in conflict with he-
lioseismology). If one accepts the idea of “turbulent magnetic diffusivities”
based upon turbulence, mixing length ideas or “mean field theory”, which
yield conductivities several orders of magnitude smaller, a dynamo is indeed
required to sustain fields against this “enhanced diffusion”. This issue is
discussed below (section 2.6.1).

The Sun could well have both a “large scale” and a “small scale” dynamo.
If most magnetic energy is in scales associated with turbulence (surface
granulation for example has scales of ∼ 1 Mm compared with R⊙ = 700
Mm) we speak of a small-scale dynamo. On the basis of Figure 2.7, 3D
numerical simulations with Prandtl numbers Pm = ν/η ∼ 1 (e.g. Cattaneo,
1999), it is tempting to conclude that a small scale dynamo is active on the
Sun. Caution is needed since the convection zone has Pm ≪ 1. Almost
any chaotic velocity field with large Rm produces a small-scale dynamo
(Cattaneo, 1999), but a large scale dynamo requires new ingredients, such
as a net mean helicity in the turbulence induced by, say Coriolis forces
(Parker, 1955) and/or large scale shears.

However, MHD dynamos require at least some diffusion to work at all.
This is clearly seen by taking the limit of ideal MHD, (σ → ∞), in which
the magnetic field is frozen to the plasma. In this case the magnetic

Fig. 2.13. A figure from Rempel (2009) showing two possible dynamos. Amplifi-
cation occurs during stretching, the twist-fold and reconnect-repack steps remap
the amplified flux-rope into the original volume element so that the process can be
repeated. Both three dimensions and magnetic diffusion are required to allow for
the topology change needed to close the cycle.

fields entrain the same elements of plasma for ever. Thus, the topology of
the magnetic fields is fixed, once and for all in this limit, all that can be
done is to entangle tubes of plasma-entraining flux between one another, like
braiding hair in which the bundles of hair are separate entities. But this can
only be achieved so far as the Lorentz force (j×B) does not act to oppose the
braiding. Consider Figure 2.13 from Rempel (2009), showing the operation
of “flux rope” dynamos. In the absence of diffusion, repeated stretch-twist-
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folds simply generate more complexity (more turns of the rope in a given
volume). Eventually such a state will need such strong Lorentz forces that
the limited driving energy can generate no further changes. This behavior
is not capable of explaining solar magnetic behavior. With diffusion, the
topology can change (the dashed “reconnection” step in the figure), allowing
field lines to slip across the fluid, as is required to explain, for example, the
11 year flip in magnetic polarity of global solar magnetic fields.

The role of stretching, among other velocity gradient effects, can be seen
from the ideal induction equation

∂B

∂t
= curl (u×B) = −(u · grad )B+ (B · grad )u−B∇ · u. (2.21)

The first term on the right hand side describes advection of magnetic field,
the second amplification by shear (including stretching) and third by com-
pression.

Helioseismology has revealed large-scale velocity shears in the solar inte-
rior. Radial shear exists near the interface of the core and convection zone
(“the tachocline”), near the surface; latitudinal shear exist at intermediate
latitudes throughout the convection zone (Schou et al., 1998). Such sheared
regions naturally lead to field amplification through equation (2.21). Figure
1 of Spruit (2011) is reproduced in Figure 2.14. It shows the linear growth
rates of toroidal field starting from a uniform poloidal field, driven by a fit
to surface differential rotation (a rough approximation to interior rotation
through the solar convection zone). But, as Spruit (2011) emphasizes:

“The common ingredient . . . is the generation of a toroidal (azimuthally directed)
field by stretching (winding-up) of the lines of a poloidal field. . . This is “the easy
part”. . . To produce a cyclic, self-sustained field as observed there must be a second
step that turns some of the toroidal field into a new poloidal component, which is
again wound up, completing a field-amplification cycle that becomes independent
of initial conditions.”

(Rempel, 2009, sections 3.3.7 - 3.4.3) summarizes these ideas using an ex-
ample of a cylindrically symmetric non-dynamo and dynamos based upon
scale separation, the “mean field” dynamos, based on work by Rädler (1980).
Equations for the evolution of the large-scale or “mean” fields u and B are
written in terms of the mean fields themselves and the correlations between
the small scale velocity and magnetic fields, u′, B′. The latter are, in turn,
written in terms of the large scale fields to provide closure, based upon
several strong assumptions, but drawing upon several important symmetry



36 Philip G. Judge

Fig. 2.14. A figure from Spruit (2011) showing the growth rates ∂B

∂t
of toroidal

field, starting from a uniform poloidal field stretched by observed surface latitudi-
nal differential rotation, neglecting any Lorentz force. Is this simple figure a key
ingredient in the solar dynamo?

properties. In a nutshell, the mean field equations yield

∂B

∂t
= curl

(

u′ ×B′ + u×B− η curlB
)

, (2.22)

where a “new” electromotive force (EMF) term arises compared with the
full induction equation:

E = u′ ×B′ . (2.23)

Taking into consideration symmetries, the EMF can be written in terms of
tensor turbulent transport coefficients α, β, γ and δ as

E = αB+ γ ×B− β curlB− δ × (curlB) + . . . (2.24)

Making further physical assumptions with various levels of justifiability, the
tensors α and β become diagonal. With τc the correlation time of compo-
nents of u′ Rempel writes (his eqns. 3.59, 3.60)

α =
1

3
αii = −

1

3
τc u′ · (curl u′) , ηT =

1

3
βii =

1

3
τc u′2 , γ = −

1

2
grad ηT .

(2.25)
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The α-effect is related to the kinetic helicity of the flow, Hk:

Hk = u · (curl u) , (2.26)

while the turbulent magnetic diffusivity is proportional to the intensity of
the turbulence. In fact, ηT ∼ Lurms ∼ Rmη ≫ η (Rempel 2009, his equation
3.63), and ηT describes the transport of magnetic energy via advection and
some reconnection of field (section 2.7), the latter requiring the development
of small scales to permit ultimate dissipation via Ohmic collisions.

Under the influence of rotation at angular velocity Ω, and when stratifi-
cation exists (under a gravity vector g), then

α ≈ α0(g ·Ω) = τ2c v
2
rmsΩ · grad ln(ϱvrms) (2.27)

Note that Ωτc is the Rossby number shown on the abscissa of 2.12.
In essence, the α-effect “fixes” the problem quoted from Spruit above by

adding the following term αB to the induction equation

∂B

∂t
= . . .+ curl

(

αB
)

= . . .+ αµ0j , (2.28)

i.e. the induced magnetic field is proportional to the mean current. The
new term converts poloidal magnetic field into toroidal field and vice-versa,
so there exists in principle the following dynamo scenario:

Bt
α−→ Bp

α−→ Bt , (2.29)

called an “α2-dynamo”. Preferred α2-dynamo modes are stationary solu-
tions with poloidal and toroidal field of comparable amplitude, clearly not
compatible with solar data.

Returning to the Sun, its known interior shear profiles and essential prop-
erties of time-dependent large scale magnetic fields (2.4.4), we can see that
a combination of shear-driven amplification (Ω-effect) and an α effect might
in principle contain essential ingredients of a solar dynamo: to deliver strong
toroidal fields at the surface in the form of emerging ropes of flux generated
by the Ω effect, and an α effect to complete the cycle of events needed for
field reversals. Such models are epitomized by those of (e.g. Dikpati and
Charbonneau, 1999). In this case, the α effect producing toroidal field is
assumed smaller than the Ω effect, so that we have

Bt
α−→ Bp

Ω−→ Bt , (2.30)

In such a dynamo, “waves” of amplified field propagate along gradΩ- to
explain the latitudinal migration of spots (butterfly diagram) this requires
a radial gradient in Ω. This basic property of αΩ dynamo-waves is pitted
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against recent arguments by Spruit in the next section. Lastly, the “tight
relationship” with Rossby number plotted in figure 2.12 should not be re-
garded as supporting mean field dynamo models per se, given the underlying
assumptions as stressed already by (Noyes et al., 1984).

2.6.1 What might be the ingredients in the solar dynamo?

In order that an αΩ dynamo be consistent with the observed 22 year periodic
change in global solar magnetic field, the cycle of events must take place
fast: the speed at which the cycle eq. (2.30) is limited by the slowest critical
physical process. The differential rotation operates fast in the Ω part of
the cycle, the ratio ∆Ω/Ω is ∼ 0.1, so the time t where ∆Ωt ∼ 1 is about
10 rotations, the best part of a year. A critical part of all dynamos is
not just the existence of an α-effect but the accompanying β-effect which
helps promote the changes of topology by generating small scales needed
for kinetic diffusivities to become important. In the mean field theory this
process is modeled through the “turbulent diffusivity” (equation 2.25), which
is equivalent to an “eddy diffusivity” of 1

3λv
′. Conveniently, the “mixing

length” λ and v′ values yield ηT ∼ 1012 cm2 s−1, orders of magnitude larger
than kinetic values. Such values are close to those needed in dynamo models
to produce cycles near 11 years in length, in this formalism.

So is everything in order? Not according to Parker (2009); Spruit (2011),
who have independently re-assessed the ingredients needed to make a dy-
namo compatible with physical principles and observations. Both have
pointed to problems with the mean field/ turbulent dynamo concept. Parker
points out that the concept of a turbulent diffusivity at high Rm, valid in
the kinematic regime, is likely invalid in the dynamic regime. By consider-
ing the magnetic fields to be frozen up til the development of scales small
enough for molecular diffusion to arise, Parker argues that the diffusion oc-
curs when the field strength has increased by R1/2

m . However, by the time
this occurs, the magnetic stresses (∝ B2) will have increased by Rm. Thus,
for fields of interest, the magnetic stresses overwhelm any turbulence long
before resistive diffusion can obliterate the field. In the language of mean
field theory, Parker concludes that

“The idea that the azimuthal [i.e. toroidal] magnetic field is subject to ordinary
turbulent diffusion, with η = 1

3
uλ, seems unjustified . . . There is no way to account

for the value ηT ∼ 1012 cm2 s−1, suggesting that it is necessary to re-think the αΩ-
dynamo for the Sun.”

It should be noted however that magnetic stresses can both hinder and
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enhance small scale dynamics, indeed there is evidence from numerical work
that on small scales there may not be such a dynamical reduction of diffusive-
like dynamics (Rempel, personal communication 2014).

Spruit (2011) offers a scathing critique of mean field dynamo theory, ar-
guing instead for a return to models of the 1960s (Babcock, 1961, 1963;
Leighton, 1969). In the 1960s nothing was known about interior rotation
profiles of the Sun, in these early works the surface (i.e. latitudinal) rotation
profile was adopted for simplicity. In Spruit’s view, latitudinal differential
rotation generates toroidal field in the interior, which becomes unstable to
buoyancy. The dynamic buoyant rise of these toroidal ropes of magnetic
flux is subject to the Coriolis force generating automatically poloidal field.
As shown in Figure 2.14 the first flux is expected to emerge near 55◦ lati-
tude, and later flux emerges polewards and equatorwards. Some properties
of Figure 2.10 might be considered qualitatively (if not quantitatively) com-
patible with this picture. Spruit cites evidence (albeit indirect) for such
behavior, other support has recently been reported by McIntosh (private
communication 2014). Convective turbulence plays no active role in the in-
duction equation, instead it provides stresses needed to maintain latitudinal
differential rotation.

Spruit’s concerns can be summarized as follows:

• The observed evolution of sunspots points to processes which are not
diffusive in nature (see quote in section 2.4.3). The observations reveal
intense bundles of flux that must have been assembled by deterministic
processes from below.

• Various observed properties of emerging flux appear compatible with the
simple notion that the solar cycle reflects the rate of generation of toroidal
field by latitudinal differential rotation (Figure 2.14). There remain im-
portant questions (why do sunspots form only at low latitudes?).

• The radial gradient (“tachocline”) in rotation profile at the base of the
convection zone can do little work to stretch the magnetic field, the lower
boundary being stress-free in the radiative core.

• Instead the latitudinal gradient found in helioseismology – similar to the
surface differential rotation profile known by Babcock and Leighton in the
1960s – is a more promising source for the Ω-effect.

• The physical justifications underlying mean field theories are weak.

• Hale’s and Joy’s laws imply, albeit indirectly, that a strong (super-equipartition)
field is required to survive in the convection zone.

• Such a field, roughly 105 G in the depths of the convection zone, is also an
estimate of the field strength needed for buoyant eruption (e.g. Schüssler,
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1996). (Recent work has relaxed this estimate to a few tens of kG, Weber
et al., 2013). Several observed properties of sunspots seem compatible
with such “initial conditions” for the formation of sunspots.

At least two open questions remain, one being how to maintain the toroidal
field in the latitudinal shear layer as it builds up slowly to become buoyant,
against the strong convective eddy motions. Spruit cites another puzzle:

The most challenging problem may well be finding a satisfactory description for the
process by which the mass of buoyant vertical flux tubes resulting from a cycle’s
worth of eruptions gets ’annealed’ back into a simpler configuration. . . appeal to
traditional convective ’turbulent diffusion’ will not work (even if the concept itself is
accepted), since the fields are now much stronger than equipartition with convection
(at least near the base of the convection zone where this annealing has to take place).

I conclude that while we have different cookbooks and different recipes
to make a solar cycle-like model, we still seem to be missing some key in-
gredients in explaining how the Sun and other stars re-generate their global
magnetic fields.

2.7 Magnetic field dissipation, topology, reconnection

By “dissipation”, I refer to the conversion of ordered forms of energy to
disordered, thermal energy. In MHD, magnetic energy is dissipated directly
through Ohmic dissipation (the ∇2 term in the induction equation) in which
the ordered differential motion of electrons and ions (or other neutral species
when present), i.e. electric currents, is converted to random motion, heat,
via particle collisions. The rate of conversion of this energy, j ·E is merely

1

2µ0

∂B2

∂t
= j2/σ = (curlB)2/µ2

0σ (2.31)

Of course the rate of destruction of magnetic field is

∂B

∂t
=

1

µ0σ
∇2B = η∇2B (2.32)

Manifestly both processes involve the generation of small scales to be effec-
tive. But to dissipate energy on large scales requires a mechanism naturally
generating such small scales. In the limit Rm → ∞ , topology becomes ter-
ribly important, because, owing to Alfvén’s theorem plasma is nearly frozen
to specific tubes of flux. One can imagine an initial condition of a star
threaded by magnetic field, say in a simple dipolar configuration. Draw a
closed path around some magnetic flux, the field lines on this path trace out
a tube which will close back on itself (there are no monopoles). As time
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goes on, convection, rotation, shear tries will make this field very untidy,
but Alfvén’s theorem implies that although plasma may be forced to move,
the topology of this tube cannot change- to make knots in this requires one
to cut the flux tube, but this is forbidden in ideal MHD. The topological
constraints are of a global, not local, nature, in contrast with the local terms
in the equation of motion.

To change magnetic topology requires diffusion, i.e. the development of
smaller physical scales. Most of the solar- and solar-terrestrial phenomena
of interest involve the evolving magnetism and its changing topology, even
on the largest scales. Like cutting through rubber bands, the “snip” only
needs to occur somewhere along a tube of magnetic flux, not along the
entire length. Enormous changes ∂B

∂t can occur because of a “reconnection”
(a “snip” that satisfies divB = 0) somewhere else along a tube, allowing
the system to reach a lower energy state in a state with a quite different
topology.

Magnetic reconnection in MHD is the study of changing topology of mag-
netic fields. Accordingly, one would think that the diffusivity η plays a
central role. But in fact η plays a secondary role, something that became
clear when discussing the β effect in mean field dynamos. In that case,
correlations between velocity and magnetic perturbations lead to values ηT
that are associated with the “turbulence”- parcels of fluid are moved bodily
with speed u a mixing length λ to produce ηT = 1

3uλ to produce changes in
the magnetic field orders of magnitude faster than are possible using kinetic
values for η. In this picture, field lines frozen to fluid elements are advected
by them without hindrance by the Lorentz force (in the kinetic regime of
mean field theory), shuffling them around. No reconnection is implied in the
mean field theory by ηT , this term originates from the curl (u × B) term.
It is merely a re-shuffling, which, in MHD, can lead to reconnection if and
when it generates scales small enough for genuine diffusion to occur via the
kinetic value of η.

Important first steps in magnetic reconnection were taken by Dungey
(1953), Sweet (1958), Parker (1957). The famous 2D “Sweet-Parker” model,
based upon a stationary flow bringing opposite polarity, collision-dominated
plasmas together, yields a diffusion rate ∼ VA/

√
Rm, which, through Rm,

depends explicitly on η. A modification by Petschek (1964) introduced slow
shocks to allow the bulk of the frozen field in the Sweet Parker picture to
avoid having to flow through the diffusion region, permitting the diffusion
region to be much shorter. In Petschek’s scenario, much faster reconnection
rates ∼ VA/ logeRm, almost independent of η, were achieved! Such recon-
nection scenarios are called “fast” reconnection (i.e.. almost independent of
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Rm), they are required to account for the sudden release of energy seen in
solar flares, coronal mass ejections, and indeed to explain the operation of
the solar dynamo. For some time the ability of space plasmas like the solar
corona to be able to reconnect at the Petschek rate (i.e. “fast” enough)
was in doubt, it requiring a somewhat specific configuration and prescribed
steady state in the velocity field. Curiously, tearing instabilities in MHD has
been put forward by Bhattacharjee et al. (2009), may provide MHD systems
with a natural tendency to approach the Petschek rate of reconnection. Re-
connection physics is a huge subject and so I simply refer readers to texts
by Biskamp (2005) and Priest and Forbes (2007), and a tutorial article by
Kulsrud (2011).

Below, I point out some problems I find interesting concerning the evolu-
tion and dissipation of magnetic fields under conditions where turbulent and
Reynolds stresses and gas pressure dominate (the high β regime), a regime
that occurs in the solar interior and most parts of the solar photosphere.
I also discuss Parker’s “fundamental theorem of magnetostatics” as it per-
tains to the solar corona, which is mostly in the opposite, low plasma-β
regime. Some surprises will arise. Figure 2.15 shows the dramatic change
from hydrodynamically dominated turbulent structure characteristic of the
dense photospheric plasma, to the magnetically dominated corona in the
tenuous plasma there.

2.7.1 “High β” plasma

Surface magnetic fields on the Sun exhibit behavior that seem to imply
enormous diffusivities at and near the visible surface. Generally speaking,
direct observations of ∂B

∂t are not made, instead “tracers” of magnetic fields
measured through “bright points” in the photosphere or overlying coronal
structures, for example. An implicit assumption is that fields evolve across
some two dimensional surface, there is no flux of magnetic field through the
atmosphere. In one example, Abramenko et al. (2011) studied trajectories
of tiny bright points of magnetic origin in photospheric inter-granular lanes
and derived diffusion coefficients ∝ λγu where γ = 1 for “normal “ (thermal-
like) diffusion. These concentrations of magnetic field are close to the “high
β” regime, so that the surface magnetic fields are assumed not only to be
advected only across the surface but that they are unimpeded by magnetic
forces. These studies typically yield ηT ∼ 3 × 1012 cm2 s−1. Rather aston-
ishingly, this surface diffusion coefficient is of the same magnitude needed to
make a (3D) interior dynamo work in the kinematic regime (Parker, 2009)!

Does this (coincidence?) lend credibility to the idea of “turbulent dif-
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Fig. 2.15. An image showing a longitudinal magnetogram (blue and orange with
opposite polarities) and some associated hot plasma in the overlying corona (green).
The switch from dominant “turbulent” fluid motions seen in in the photospheric
magnetogram, an example of a “high β plasma, to the far more ordered coronal
loop structures arising from the dominant magnetic stresses, a “low β plasma”,
is dramatic. But the switch occurs in a geometrically thin, poorly understood
stratified layer called the “chromosphere” which is not seen in this image. The
magnetograms trace out “supergranule” cells of 20-30 Mm diameter.

fusion”? This remains an open question. The argument of Parker (2009)
says “no”, others (e.g. Lazarian, 2013) believe turbulent diffusion a central
physical process in all plasmas with small diffusive terms. The resolution of
this difference will probably come from detailed studies of direct numerical
simulations, to look at when and where the small-scale Lorentz forces act so
as to oppose reconnection, since they can also enhance it. Rempel (2009)
discusses some of these issues in the context of mean field theory in section
3.5.2.

Curiously, it has become customary to invoke “turbulent diffusivities” to
explain observations of the rotation and evolution of coronal features, such as
coronal holes, in higher layers of the Sun’s atmosphere where the magnetic
stresses tend to dominate. It is important to understand the meaning of
such work since the literature invokes diffusion and reconnection sometimes
interchangeably, and at various levels in the sun’s atmosphere (photosphere,
corona).
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Fig. 2.16. Interchange reconnection: the location of a coronal hole and quiet Sun
boundary is indicated as a line. In the left figure, a quiet Sun loop located near
a CH open field. Following the reconnection (at the “x”) a small loop is created
inside the CH and the open field line relocated, in the right figure. This process has
been invoked to explain the rigid rotation as well as the growth of coronal holes.
From Krista et al. (2011).

On the one hand, in the work of Wang and Sheeley (1993) diffusion occurs
(implicitly) in the photosphere. They solve a 2D surface induction equation
using a diffusivity of 6×1012 cm2 s−1 and macroscopic velocities based upon
photospheric measurements. Consider an area originally of normal “quiet
Sun” (i.e. mixed polarity) that is evolving into a coronal hole (mostly one
polarity). The change in polarity must occur in surface transport models
via some “cancellation” or reconnection at photospheric heights of field of
opposite polarity to that of the coronal hole. Since there are no monopoles
the net flux remains the same but the boundaries move. This can occur just
as fast as the flows drive opposite polarities together since there is nothing
to halt mutual annihilation. In this model, the corona is dealt with via a
potential-field extrapolation (including a source surface at 2.5R⊙ for “open”
field lines), in which the state of the corona is set instantaneously by the
boundary conditions. By assumption no electrical currents are permitted in
the coronal plasma. If an MHD calculation were performed instead using the
same boundary conditions, one would impose a large value of η to dissipate
all currents on timescales short compared with dynamical times, i.e. Rm ∼<
1. In turn this implies very fast reconnection everywhere in the corona.
Astonishingly, this simple model is found to capture important features of
the evolving coronal holes under study. In the next section I discuss more
recent work on effective diffusion in the corona.
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2.7.2 Low β plasma: diffusion

As well as in high-β plasmas, it has become popular to describe coronal
magnetic field evolution in terms of diffusive processes. For example, super-
ficially similar work to that of Wang and Sheeley (1993) has been presented
by Fisk and Schwadron (2001), followed by later work (e.g. Krista et al.,
2011). In these studies, observations in the coronal plasma have been used
to infer effective diffusivities. In their studies of coronal holes, observations
indicate to Fisk & Schwadron that

“Diffusion by random convective motions in supergranules† is quite slow and will
prove to be inadequate for the transport of open magnetic flux on the Sun. We
introduce, therefore, a faster process.”

The proposed process is called “interchange reconnection”, where ∂B
∂t changes

locally at a point in the corona by the process illustrated in Figure 2.16 from
Krista et al. (2011). It is quite a different process than the convective dif-
fusion, it has a diffusion coefficient at least an order of magnitude larger.
To describe the evolution of coronal hole boundaries, Krista et al. (2011)
find ηT ∼< 3 × 1013 cm2 s−1. Fisk and Schwadron (2001) however found
ηT ∼ 3.5 × 1013 and 1.6 × 1015 (50× larger!) cm2 s−1, based upon the ap-
parent “jumping around” movement of closed loops, within coronal holes
and near the equator respectively. The picture is that this kind of topology
change corresponds to a diffusion coefficient which can approach 1

3λvA for
a “jump” of length λ at the enormous Alfvén speed vA. The new idea is
that fast reconnection occurs somewhere well above the photosphere where
the Alfvén speed is high, between open and closed regions brought slowly
together by the relatively slow photospheric footpoint motions. Instead of
annihilation of fields at the photosphere, a smaller loop structure, not reach-
ing coronal heights, remains (Figure 2.16).

This is an interesting departure from the “mean field” picture since mag-
netic forces ostensibly cannot be neglected, so this effect cannot be described
by kinematics of hydrodynamic turbulence. What, then, does a “turbulent
diffusivity” mean in the low-β regime? This example differs not only in
plasma β from the photosphere, but also in that implies that reconnection
is very fast.

There are observable consequences of such large values of η occurring
near the coronal base. Using η ∼ 1

3L
2/t we can turn this around and say

that such diffusion will limit the lifetime of any solar features to t ∼< L2/η.
Modern telescopes resolve features down to about 107 cm on the Sun. With
η = 3 × 1013 cm2 s−1, the lifetime is ∼< 3s. There are many fine scale

† Simon et al. (1995) find ηT ∼ 5− 7× 1012 cm2 s−1 for supergranules.
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structures living far longer than this seen near the coronal base in quiet and
coronal hole regions (e.g. de Pontieu et al., 2007). Additionally, if we allow
that say 1 day is needed for a L ∼ 20 Mm-sized active region to build up
enough free energy within the corona so that a large reconnection event can
trigger a flare, then η ∼<

1
3L

2/(1 day), or about 1013 cm2 s−1. It seems that
interchange reconnection, if real, does not happen everywhere, all the time,
in the Sun’s corona. If it does happen, then we must explain how it occurs
so rapidly in the low-β environment at far higher rates than can be driven by
photospheric diffusion driven by turbulence there. Is there a process which
can drive such dynamic changes?

2.7.3 Low β plasma: reconnection, flares, heating

The “coronal heating problem” is a 70+ year old problem that is alive and
well. It is a long recognized “grand challenge” for astronomy (e.g. Hoyle,
1955). Several lines of argument indicate the magnetic field as a prime
source of energy (e.g., see Figure 2.15). Why is this problem so “refractory”,
resistant to a clean solution? After all, usually a mere 1 part in 106 or so of
the Sun’s energy flux is used to maintain a corona. Part of the problem is
precisely because of this small energy requirement. The problem is “ill posed”
in that unobservably small changes in regions of the atmosphere where we
can accurately measure components of energy fluxes (via hydrodynamic or
electrodynamic processes) can lead to order zero changes in the energy flux
into the corona! Indeed, photospheric changes associated with large flares
has only in recent years been detected through spectropolarimetry.

We have an embarrassment of riches in ideas to convert ordered mag-
netic energy into heat (e.g. Parnell and De Moortel, 2012). But the bulk
of the mechanisms rely on the same process- the development of small
scale structures in the large coronal volume in order to permit either MHD
(Ohmic heating, viscous heating) or non-MHD processes (wave particle in-
teractions?) to dissipate magnetic energy. Instead of focusing on individual
mechanisms, I draw attention to a general property of low β, highly con-
ducting plasma, first discovered by Parker (1972); Parker (1994).

In the limit of “zero β”, the Lorentz force is the only game in town.
Parker asks us to consider that a force-free state exists between two infinitely
conducting plates at z = 0, z = L, filled with an infinitely conducting
plasma, then

j×B = 0 (force− free condition) (2.33)
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which is non-trivially satisfied when

curlB = α(r)B (2.34)

where α(r) is a measure of twist. Boundary values of Bz are specified. The
ideal induction equation endows the magnetic field with a specific, fixed
topology. An operational approach is taken, first to obtain the set of all
continuous force-free fields satisfying the boundary conditions. These fields
typically have different topologies, one of the fields being the unique po-
tential field (α = 0). The second step is to search the set S {Bα} for the
solution Bsol

α with the correct topology τ .
Then Parker’s “Fundamental Theorem of Magnetostatics” says that, in

general, the solution Bsol
α must be discontinuous. The relevance to the Sun is

that, on the one hand, one can imagine the two plates being the solar “pho-
tosphere” and the intermediate plasma as the “corona”, the corona living
long enough for magnetostatic equilibrium to be a reasonable approximation
outside of obvious dynamic events. The relevance to the heating, reconnec-
tion, flaring problems should be clear also, in that the theorem enforces
the formation of magnetic discontinuities in anything other than highly tidy
geometries. This is precisely the property – the systematic development of
small from large scales – needed to account for dissipation and reconnection.
In the physical situation on the Sun, this implies that other physics must be
included- ideal MHD causes its own demise. In trying to become singular
to satisfy the partial differential equations as well as the integral equations
imposing the field-line topology, ideal MHD must break down.

On the other hand, solar plasmas are not infinitely conducting, the photosphere-
corona interface involves the complications of the chromosphere, which is not
force-free. Much has been discussed regarding this theorem far beyond these
simple comments, but closer inspection of mathematics (Low, 2010; Janse
et al., 2010) and some highly non-dissipative numerical simulations (Bhat-
tacharyya et al., 2010) have revealed evidence in support of the theorem.
The reader should refer to the cited papers for the formal proofs, but they
can also be understood using two heuristic arguments. Using the abstract
of the paper by Janse et al. (2010),

“A magnetic field embedded in a perfectly conducting fluid and rigidly anchored at
its boundary has a specific topology invariant for all time. Subject to that topol-
ogy, the force-free state of such a field generally requires the presence of tangential
discontinuities (TDs). This property proposed and demonstrated by Parker [Spon-
taneous Current Sheets in Magnetic Fields (Oxford University Press, New York,
1994)] is explained in terms of (i) the over-determined nature of the magnetostatic
partial differential equations nonlinearly coupled to the integral equations imposing
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the field topology and (ii) the hyperbolic nature of the partial differential equation
for the twist function α of the force-free field.”

To see the origin of point (ii), simply take the divergence and curl of equa-
tion (2.34).

B · gradα = 0 (2.35)

∇2B+ α2B = B× gradα (2.36)

The second equation has complex characteristics, but the first implies that
α is real along field lines, showing that along field lines the characteristics
are real. There is therefore no requirement that α(r) be continuous from one
field line to the next. Different neighboring values of α clearly must lead to
some discontinuity since the twist is different at neighboring points.

In 1988, Parker proposed that this tendency for natural MHD systems
near force-free equilibrium to form discontinuities is an essential ingredient
in the physics of coronal heating. The consequence of this tendency is,
Parker argues, a theory for coronal heating – “nanoflares”(Parker, 1988).
This tendency may explain why “potential fields” (Wang and Sheeley, 1993)
can often resemble the solar corona, in spite of the fact that there is no free
energy in the potential field to produce the corona. The nanoflares might
just release this energy on small scales, giving the appearance of a near-
potential configuration on observable scales.

Lastly, Parker’s work suggests the omnipresence of small scale reconnec-
tions in untidy physical systems. As such it may provide some rationale be-
hind at least some puzzles such as “interchange reconnection” which appear
to have neither a strong physical basis nor critical observational support.

2.8 Concluding remarks

I leave it to the reader to decide if the history of dynamo theory, as related
by Parker (2009) and Spruit (2011), is a tragedy, or perhaps a comedy. The
Parker theorem on magnetostatics reminds me personally of a classic, tragic
Shakespearean hero, being defeated by its own, fundamental character flaw.
What is different from MacBath and Lady MacBeth, is that the “flaw” in
ideal MHD might just lead to the correct explanation of much “coronal
heating”, a problem of a mere 70 years, but a significant one.

For my own part, I have learned to take seriously the weight of observa-
tional evidence and the ingenuity of theoretical scientists to understand the
true implications of what the truly critical observations imply. This is one
way of describing the “Scientific Method”. I believe solar physics is, and will
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remain for some time, an “observationally-driven” area of research. Either
way, it is an ongoing, entertaining drama.

“I wish your horses swift and sure of foot; And so I do com-
mend you to their backs. Farewell.” – MacBeth
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