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The effects of the second viscosity on sound waves propagating in plasmas at thermochemical
equilibrium are analyzed. It is found that this viscosity can be more important than the dynamical
viscosity as well as than the thermometric conductivity, in particular, in photoionized plasmas with
arbitrary metallicityZ. The strongest damping per unit wavelength always occurs for sound waves
with a period of the order of the ionization relaxation time. Additionally, such a damping is more
efficient for plasmas with solar abundancessZ=1d than for primordial plasmassZ=0d. In
collisionally heated pure hydrogen plasmas the second viscosity becomes zero. ©2004 American
Institute of Physics. [DOI: 10.1063/1.1792633]

I. INTRODUCTION

In analyzing the linear wave propagation as well as in
determining the local stability by linear theories in optically
thin fluids where the heat gain/loss term in the energy equa-
tion is denoted by a local function of the thermodynamical
variables, say density and temperature, usually it is assumed
that the damping of the wave modes1–3 or the stabilizing
effect of local perturbations4–6 is due to the thermal conduc-
tion. The above is justified by the fact that thedynamical
viscosity(shear viscosity) term in the energy equation is a
second-order term, and even though it is a first-order term in
the momentum equation, it is argued that the viscosity coef-
ficients are smaller than the thermometric conductivity. The
above is a reasonable approximation when the chemical re-
laxation time t of the gas is larger(chemistry frozen) or
smaller (fluid in chemical equilibrium) than other relevant
time scales, say the dynamical and thermal times. However,
when these time scales are of the order oft, the second
viscosity (bulk viscosity) n2=z /r becomes larger than the
thermometric conductivityx as well as than the dynamical
viscosityn=h /rs&xd, and the corresponding dissipative ef-
fects become important, in particular, in determining the
threshold value for wave amplification or the marginal values
for stability. Additionally, as pointed out in Ref. 7(p. 309)
the second viscosity which is due to the irreversibility of
chemical reactions, is quite different in nature from the dy-
namical viscosityn because the coefficientz is dependent, in
addition to the thermodynamical properties of the gas, on the
frequency of the fluctuations(it is dispersive). The analysis
of the above effects on the propagation of otherwise isentro-
pic sound disturbances is the aim of the present paper.

II. BASIC EQUATIONS

Due to the fact that the interest will be focused on the
bare second viscosity effects on the sound waves propaga-

tion, instead of handling the full linearized gas dynamics
equations for reacting gases it is simpler to start from the
second viscosity expression quoted from Ref. 7(Chap. VIII,
Sec. 81), i.e.,
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sc`

2 − c0
2dt

1 − ivt
, s1d

which holds for disturbances,exps−ivtd in a reacting gas
with chemical relaxation time

t = f] Xsr,T,jd/] jg−1, s2d

with Xsr ,T,jd being the net chemical rate andj the chemical
parameter, denoting the net advance of the reactions, and the
sound velocitiesc`

2 andc0
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wherej0 is the value of the chemical parameter at chemical
equilibrium andj08=s]j0/]rd also at equilibrium.

On the other hand

c2 = S ] p

] r
D =

c0
2 − ivtc`

2
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, s4d

wheres]p/]rd=s]p/]rdj+s]p/]jdrs]j /]rd. From Eq.(4) it
follows that c no longer denotes the sound velocity, being
complex. However, for sound waves the relationk=v /c re-
mains valid; therefore

k =
v

c0
Î 1 − ivt

1 − ib2vt
, s5d

where b=c` /c0 and the wave number also becomes com-
plex, k=k1+ ik2, with k1 and k2 being real. Therefore, fluc-
tuations propagating in any direction(say x), ,expsikxd
=expsik1xdexps−k2xd, are damped providedk2.0. As it is
well known the positivity ofk2 is assured by the irreversible
character of the dissipative processes.

Therefore, from Eq.(5) it follows thata)Electronic mail: ibanez@ula.ve
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k1 =
v
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F 1 + b2v2t2
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+
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1 + b4v2t2G1/2

, s6d

k2 =
v2t

c0

b2 − 1

h2s1 + b4v2t2df1 + v2t2 + Îs1 + b4v2t2ds1 + v2t2dgj1/2
, s7d

from where the damping rate per unit wavelengthk1/k2 as
well as the phase velocityvph=v /k1 can be straightforwardly
calculated.

III. DAMPING OF SOUND WAVES IN OPTICALLY
THIN PLASMAS

There are two plasma models of current importance in
astrophysics as well as in the laboratory:(1) a collisionally
ionized hydrogen plasma and(2) a photoionized hydrogen
plasma with metallicityZ, for both of which the pressure is
simply

p = NokBs1 + jdrT,

where No is the Avogadro number,kB the Boltzmann con-
stant, andj the degree of ionization.

On the other hand, for these plasmas the thermometric
conductivity can be written as4,8

x =
1

rcp
F2.53 103s1 − jdT1/2 + 1.843 10−5 jT5/2

ln Lsr,T,jdG .

s8d

A. Collisionally ionized hydrogen plasma

For the hydrogen plasma model studied in a previous
work,6 i.e., a collisionally ionized pure hydrogen plasma, the
net rate functionXsr ,T,jd and the net cooling rate per unit
massLsr ,T,jd, respectively, are given by

Xsr,T,jd = N0aBsTdrj2 − N0qsTdrjs1 − jd, s9d

Lsr,T,jd = N0Rrj2TbBsTd + N0
2xhrjs1 − jdfqsTd + FsTdg

− L0, s10d

wherexh=13.598 eV,L0 is a constant per unit mass heating,
and the coefficientsasTd, gcsTd, bBsTd, andFsTd are given
by Refs. 9–11. The galactic valueL0=3.25310−4 erg g−1.
s−1 (Ref. 12) has been taken as a reference value.

For this plasma the ionization at equilibriumXsr ,T,jd
=0 becomesj0=qsTd / faBsTd+qsTdg, i.e., only a function of
temperature, and therefore the second viscosity is strictly
zero. Therefore, for this particular plasma the relevant dissi-
pative processes are the thermal conduction as well as the
dynamical viscosity.

B. Photoionized hydrogen plasma with metallicity Z

For an optically thin hydrogen plasma with metallicityZ
heated and ionized by a back-ground radiation field of mean
photon energyE and ionization rate§, the net rate function
Xsr ,T,jd and the net cooling rate per unit massLsr ,T,jd
are, respectively, given by13

Xsr,T,jd = N0rfj2a − s1 − jdjgcg − s1 − jds1 + fd§,

s11d

Lsr,T,jd = N0
2rfs1 − jdZLHZ + jZLeZ+ s1 − jdjLeH

+ j2LeH+g − N0s1 − jd§fEh + s1 + fdxhg, s12d

wheref is the number of secondary electrons,Eh the heat
released per photoionization,14 LHZ, LeZ, LeH, andLeH+, re-
spectively, are the cooling efficiencies by collisions of neu-
tral hydrogen ions and metal atoms,15,16 electron ions and
metal atoms,16 Lya emission by neutral hydrogen17 and hy-
drogen recombination, on the spot approximation.9 The me-
tallicity Z is defined such thatnY/nH=YZ wherenY and nH

are the number density of the heavy element with cosmic
abundanceY and of the hydrogen atoms, respectively. There-
fore, Z=0 for a pure hydrogen plasma andZ=1 for a plasma
with solar abundances. The heavy elements considered are
O, C, N, Si, Fe, and S.16,17

From Eq.(11) it follows that

t = sNo rd−1F2 aj + sj − 1d gc +
s1 + fd
No r

§G−1

, s13d

j08 = −
1

2

s1 + fd§fgc + 2 a − ÎB + s1 + fd§/Norg
sa + gcdNor2ÎB

, s14d

where

B = gc
2 + 2s2a + gcd

s1 + fd§
rNo

+ F s1 + fd§
Nor

G2

.

Figure 1 is a plot of the chemical relaxation time[Eq.
(2)] as a function of temperature for a photoionized plasma at
thermochemical equilibriumX=0 andL=0 for two represen-
tative values of the metallicity,Z=0 and 1. ForZ=0 and the
photon energyE=15 eV (dash-dot-dot line) and E=102 eV
(dot line). For Z=1 the dashed line corresponds toE
=15 eV and the continuous toE=102 eV. Note that the
range of temperature at which the above equilibria exist
strongly depends on the values of the parametersZ and E.
The corresponding ionization values as functions of tempera-
ture are shown in Fig. 2. ForZ=1 and low temperatures
sT,104 Kd the relaxation time is maintained at a quasicon-
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stant value due to the slow decreasing of the ionization and it
sharply decreases when the hydrogen recombination be-
comes very effectivesT.104 Kd, whereas for a pure hydro-
gen plasmasZ=0d the relaxation time sharply increases for
T,104 K due to the strong decreasing of the ionization(see
Fig. 2). The above effects are due to the contribution to the
density of electrons of the heavy metals for plasmas with
solar abundances and the lack of these in a pure hydrogen
plasma.

Figure 3 is a plot of the viscosity coefficientn2 (the set
of four upper lines) and the thermometric conductivityx (the
set of four lower lines), corresponding to the representative
values forZ and E of Figs. 1 and 2. As it has been shown
above, the second viscosity is a complex quantity; therefore,
in this figuren2 represents the asymptotic casevt!1. The
second viscosity is larger than the thermometric conductivity
in the range of temperature under consideration, i.e.,
30,T,33104 K. The above holds for the plasmas with

arbitrary metallicity, in particular, for plasmas with solar
abundancessZ=1d as well as for a pure hydrogen plasma
sZ=0d.

Figures 4 and 5 show the wave numbersk1 (straight
lines) and k2 (bent lines) defined by Eqs.(6) and (7) for Z
=0 andZ=1, respectively(N0r=1 for both figures) as func-
tions of the dimensionless frequencyvt. Figure 4 corre-
sponds to an equilibrium temperatureT=104 K and photon
energy E=15 eV (dash-dot lines) and E=102 eV (dotted
lines). In Fig. 5, T=102 K, E=15 eV (dotted lines), and E
=102 eV (dashed lines). The continuous lines correspond to
T=104 K and E=102 eV.

The corresponding damping per unit wavelengthk1/k2

has been plotted in Fig. 6 as dash-dot-dot lines(Z=0, T
=104 K, E=15 eV), dash-dot lines(Z=0, T=104 K, E
=102 eV), dot lines(Z=1, T=102 K, E=15 eV), dash lines
(Z=1, T=102 K, E=102 eV), and continuous lines(Z=1, T
=104 K, E=102 eV). The strongest damping always occurs
at dimensionless frequenciesvt<1, the exact value depend-
ing on the values of the plasma parameters, as expected from
physical considerations because the maximum efficiency of

FIG. 1. The chemical relaxation time as a function of temperature for a gas
with metallicity Z=0, photon energyE=15 eV (dash-dot-dot line) and E
=102 eV (dot line). For solar abundancesZ=1, the dashed line corresponds
to E=15 eV and the continuous toE=102 eV.

FIG. 2. The equilibrium ionization as a function of temperature for the
plasmas of Fig. 1.

FIG. 3. The thermometric conductivityx and the second viscosityn2 as
functions of temperature for the plasmas of Fig. 1.

FIG. 4. The wave numbersk1 (straight lines) andk2 (bent lines) defined by
Eqs. (6) and (7) for N0r=1 and Z=0 as functions of the dimensionless
frequencyvt for an equilibrium temperatureT=104 K and photon energy
E=15 eV (dash-dot lines) andE=102 eV (dotted lines).
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energy transfer from the macroscopic kinetic energy to the
random one just occurs when the period of the macroscopic
oscillation is close to the recombination timet. So, sound
waves with frequency close to the above value become
strongly damped over about 8–10 wavelengths(for the val-
ues of the parameters under consideration). The damping
strongly decreases forvt!1 andvt@1, which corresponds
to the asymptotic cases of a gas in equilibrium ionization at
any instant and with a fix ionization, respectively. Addition-
ally, the damping is more effective at high than at low tem-
peratures because such an energy transfer becomes much
more effective at high temperatures.

The damping scale length decreases, i.e., the damping
becomes more effective when density increases. However,
the damping length per wavelength becomes independent of
density. Therefore,k1/k2 depends only on the plasma tem-
perature for any set of values of the free parametersZ andE
which determine the equilibrium values of the ionization and

the range of temperature where such equilibrium is possible.
In particular, low values ofE reduce such a temperature
interval.

Figure 7 is a plot of the dimensionless phase velocities
vph/c0 as functions of the dimensionless frequencyvt cor-
responding to the same values of parameters used in Fig. 6.
As it is expected, forvt!1 the dimensionless velocity
vph/c0→1 and forvt@1, vph/c0→b, i.e., vph→c`. Addi-
tionally, from Figs. 6 and 7 it follows that the strongest
damping occurs atvt values at which the transition fromc0

to c` occurs.
The cases analyzed above typify the main effects of the

second viscosity on the sound wave propagating through the
plasma under consideration.

Finally, one could advance that the qualitative effect of
the second viscosity on linear thermally unstable fluctuations
is, as any irreversible process, to introduce stability. The
same should be held in nonlinear stages. However, the cal-
culations of their quantitative effects remain to be analyzed.

IV. SUMMARY

In summary, the second viscosity can be more important
than the dynamical viscosity and the thermal conductivity in
reacting plasmas. In particular, in photoionized plasmas with
metallicity Z the above holds, except at very high tempera-
tures when the plasma becomes completely ionized. The
strongest acoustic damping always occurs for frequencies of
the order of the inverse of the recombining relaxation time
and it increases with temperature. Additionally, such a damp-
ing is more efficient for plasmas with solar abundancessZ
=1d than for a primordial plasmasZ=0d. In collisionally
heated pure hydrogen plasmas the second viscosity becomes
zero.

FIG. 5. As Fig. 4 for Z=1, T=102 K, E=15 eV (dotted lines), and E
=102 eV (dashed lines). The continuous lines corresponds toT=104 K and
E=102 eV.

FIG. 6. The damping per unit wavelengthk1/k2 corresponding to the wave
numbers of Figs. 4 and 5 as functions of the dimensionless frequencyvt,
dash-dot-dot lines(Z=0, T=104 K, E=15 eV), dash-dot lines(Z=0, T
=104 K, E=102 eV), dot lines (Z=1, T=102 K, E=15 eV), dash lines(Z
=1, T=102 K, E=102 eV), and continuous lines(Z=1, T=104 K, E
=102 eV).

FIG. 7. The dimensionless phase velocitiesvph/c0 as functions of the di-
mensionless frequencyvt for the same values of parameters used in Fig. 6,
i.e., dash-dot-dot lines(Z=0, T=104 K, E=15 eV), dash-dot lines(Z=0, T
=104 K, E=102 eV), dot lines (Z=1, T=102 K, E=15 eV), dash lines(Z
=1, T=102 K, E=102 eV), and continuous lines(Z=1, T=104 K, E
=102 eV).
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