For vectors \mathbf{u} and \mathbf{B}, to $O(u/c)$:

Reynolds stress tensor

$$R_{ik} = \rho u_i u_k$$ \hspace{1cm} (1)

Maxwell stress tensor

$$M_{ik} = \frac{1}{\mu_0} \left(B_i B_k - \frac{1}{2} \delta_{ik} B^2 \right)$$ \hspace{1cm} (2)

Equation of motion, including pressure tensor p, external (gravity) force \mathbf{g},

$$F_i = \frac{\partial}{\partial t} \rho u_i = \frac{\partial}{\partial x_k} \left(M_{ik} - R_{ik} - p_{ik} \right) + \rho g_i$$ \hspace{1cm} (3)

Reynolds and Maxwell stresses are quadratic in \mathbf{u}, \mathbf{B}. Hydrodynamics supports shocks, MHD also supports tangential discontinuities.

Plasma $\beta = \text{gas pressure to magnetic pressure} = \text{trace} p_{ij} / \text{trace} M_{ik}$.

Similarly, ratio of Reynolds to Maxwell stresses is $\text{trace} R_{ij} / \text{trace} M_{ik}$.
Explicitly:

Equation of motion

\[F_i = \frac{\partial}{\partial t} \rho u_i = \frac{\partial}{\partial x_k} \left\{ \frac{1}{\mu_0} \left(B_i B_k - \frac{1}{2} \delta_{ik} B^2 \right) - \rho u_i u_k - p_{ik} \right\} + \rho g_i \]

(4)

Force free equilibrium

\[\frac{\partial}{\partial t} \rho u_i = 0 = \frac{\partial}{\partial x_k} \left\{ \frac{1}{\mu_0} \left(B_i B_k - \frac{1}{2} \delta_{ik} B^2 \right) \right\} \]

(5)

\[\nabla^2 \mathbf{B} + \alpha^2 \mathbf{B} = \mathbf{B} \times \text{grad} \alpha \]

(6)

Complex characteristics. But

\[\mathbf{B} \cdot \text{grad} \alpha = 0 \]

(7)

\(\alpha = \) real constant along field lines: real characteristics. There is no requirement that \(\alpha(\mathbf{r}) \) (a measure of circulation or torque) be continuous from one field line to the next.
Dot product with \mathbf{u} gives, with continuity equation, the mechanical energy equation

$$\frac{\partial}{\partial t} U = - \frac{\partial}{\partial x_k} (P_k + \rho u^2 u_k) + \rho g u_k$$ (8)

Energy density

$$U = \frac{1}{2} \rho v^2 + \frac{1}{2 \mu} B^2,$$ (9)

and Poynting vector

$$\mathbf{P} = \mathbf{E} \times \mathbf{H}$$ (10)
Switch on 2D motions (Parker 2007, p 122) between two plates with \(\sigma = \infty \):

\[\begin{align*}
 v_x &= +kz \frac{\partial \psi}{\partial y} \\
 v_y &= -kz \frac{\partial \psi}{\partial x} \\
 v_z &= 0
\end{align*} \] \hspace{1cm} (11)

Frozen fields mean

\[
B_x(t) = +Bkt \frac{\partial \psi}{\partial y} \quad B_y(t) = -Bkt \frac{\partial \psi}{\partial x} \quad B_z(t) = B, \] \hspace{1cm} (12)

where \(\psi(x, y, zkt) \) is an arbitrary, bounded, \(n \)-times differentiable function of its arguments.