
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Spontaneous current sheets and break-up of magnetic flux surfaces
R. Bhattacharyya1,2, B. C. Low2 and P. Smolarkiewicz3

National Center for Atmospheric Research, P. O. Box 3000, Boulder, CO 80307

1 Advanced Study Program, 2 High Altitude Observatory
3 Microscale & Macroscale Meteorological Division and Institute of Mathematics for Geosciences

We demonstrate spontaneous current sheet formation during the relaxation of a three dimensional magnetic field in a viscous, perfectly conducting incompressible magnetofluid. The current sheet manifests itself in the form of magnetic tangential discontinuity created when different 
parts of the fluid press each other as it relaxes to the lowest magnetic energy state. One novel feature of the numerical scheme  used for this purpose is the description of the magnetic field in terms of evolving flux surfaces which are possible sites of tangential discontinuity formation. 
The computation follows initial global flux surfaces of simple geometry as they evolve in time to more complex forms creating magnetic tangential discontinuities in the process. This work illustrates the physics of spontaneous current sheet formation as described in the Parker theory.

The Physical Problem

Let us consider an incompressible viscous magnetofluid  under the condition of perfect 
electrical conductivity initially at in-equilibrium. For simplicity, let us further assume the field 
lines to be untwisted so that they can be represented by two independent family of global flux 
surfaces.

•  Infinite conductivity guarantees invariance of magnetic topology as the fluid evolves with time 
in response to the unbalanced Lorentz force. Magnetic energy gets converted into kinetic 
energy of flow and is lost irrecoverably through viscous dissipation

•  Magnetic field being frozen into the plasma (infinite conductivity) can not vanish entirely and 
the system will reach a minimum magnetic energy equilibrium state with time. 

•  The prerequisite condition for equilibrium is that a set of flux surfaces are also isobaric 
surfaces. But from early writings of Grad [1] to the Parker theory of spontaneous current sheet 
formation [2], it is well known that the organization of these particular global flux surfaces into 
isobaric surfaces is generally not possible for three-dimensional magnetic field. Yet the viscous 
flow must terminate the field evolution as the field runs out of  free energy under the frozen-in 
condition. 

•  The minimum energy equilibrium state, in general, is not continuous in space. As the fluid 
approaches its terminal state extreme gradients in fluid displacement and tangential 
discontinuities in magnetic field or current sheets form unavoidably. 

•  This work presents the first and simplified study in a series of investigations to understand the 
dynamical evolution of the plasma as it progresses toward the formation of current sheets under 
frozen-in condition
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To avoid unnecessary complications 
due to internal fluid energy

• The central concept behind current sheet formation 

As two fluid elements pertaining to two different portions of the same flux tube or two different flux 
tubes with their individual embedded magnetic field press into each other under frozen-in condition, 
the preservation of topology prohibits them from intermixing. Tangential discontinuities thus develop 
at the surface separating the interacting flux surfaces.

For visualization of the physical process we describe the magnetic field in terms
of magnetic flux surfaces

Simplification Untwisted magnetic field

ζξ ∇×∇=B ξ  ,  ζ  are Euler potentials [3] ξ  =constant, ζ=constant; represents a pair of 
flux surfaces

Time evolution equation for these surfaces are obtained from the  induction equation

From incompressibility 
condition
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Constitutes the closed set of equations

Initial and boundary conditions
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• Triply periodic boundary condition to avoid complications of boundary walls
• Cartesian geometry employed

constant                                                 constant    0 == ρμ

•  A variant of the multi-scale computational fluid model EULAG [4] customized for the given problem 
is employed
The governing equations are solved numerically using a non-oscillatory forward-in-time (NFT) 
approach [5]

From the perspective of numerical approximation, fluid equations  can be represented in 
the following prognostic form
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R ≡  RHS including forcing terms and dissipative terms

Ψ ≡ One of the three components of velocity/ Euler-potentials  
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An EULAG’s  template algorithm for integrating the above equation over the temporal increment Δt 
can  be symbolically written as

12
1

1
1 5.0 ,~ ,5.0 ++

+
+ Δ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ+= n

i

nn
i

n
in

i

n
in

i tRtRA ρψ
ρ
ρψ v

≡+1n
iψ Solution sought at 

grid point 
( tn+1, x i  )

A denotes a second-order-accurate flux form forward truncation scheme, namely MPDATA 
(Multidimensional Positive Definite Advection Transport Algorithm), for integrating the 
homogeneous transport equation [5]
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The template algorithm represents a system implicit with respect  to pressure and all velocity 
components, because all the forcing terms are assumed to be unknown at n+1. It is solved by 
employing the mass-continuity equation

0~ =•∇ v
Our problem is greatly simplified due to the Euler potential representation of the magnetic field. 
The Lorentz force is known at n+1 and with constant density, mass continuity equation reduces 
to incompressibility condition. 

• The initial Euler surfaces are periodic cylinders with non-circular cross-sections (Figure 1)
•  Magnetic field lines on a given ζ  = constant surface is defined by its intersection with constant  ξ  
surfaces of different radii and vice versa
•  All the field lines are closed with O-points lying along the cylindrical axis. Also for a given 
cylinder, there are three X-points one at each cap and one at the middle (Figure 2) 

Figure 1

• The magnetic field reverses its sign at the quarter length of each cylinder

Our plan of action is to look for current sheets by examining different cross sections of these flux 
surfaces as they undulate in time
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Figure 4. Temporal evolution of the 
CS of ζ= constant cylinder containing 
the X-point.

Figure 4 (continuation)

Figure 5. Temporal evolution of the reversal layer . Initial state is same as that in Figure 4.

Figure 2
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Figure 3. Time evolution global 
magnetic (dotted line)  and kinetic 
energy (continuous line).

Figure 6. Temporal evolution of a layer in-between the reversal layer and X-point containing 
layer.
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• Numerical dissipation  is predominantly effective from 96 time units (seconds) onwards (Figure 3)

•  Initial Lorentz force stretches an outer cylinder outward (along x-axis) and an inner cylinder inward  at 
the X-point containing layer (Figure 4).This generates plasma flow along the cylindrical axis and 
perpendicular to it (along y-direction). This is the initial surge of flow in Figure 3.

•  As two field lines with opposite directions approach each other in the reversal layer, they mutually 
annihilate due to symmetry. The very existence of the O-pint on the cylinder axis guarantees that the 
magnetic field decreases radially  inward. From confinement condition then, the kinetic pressure should 
be increasing radially  inward, being maximum at the O-point. 

•  Local confinement at the reversal layer is lost and it bulges out. Kinetic pressure profile ensures that 
an inner cylinder bulges out more compared to an outer one (Figures 5 and 7)

•  Plasma flow is incompressible and hence volume preserving. So an expansion perpendicular to the z-  
direction must be compensated by a corresponding contraction along the z-direction.  

•  These contractions will cause the magnetic field lines at a given side of the reversal layer  to be more 
densely packed. Due to non-circular nature of the field lines magnetic pressure becomes asymmetric for 
a thin circular strip along the surface; being greater along the  x-direction

•  Eventual local necking and breaking of the flux surface (the magnetic field is steepened so much that 
numerical dissipation steps in locally and breaks the flux surface)  points to the formation of current 
sheets in the process (Figures 6 and 7)

Figure 7. Flux surfaces and magnetic field lines. 
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