"An erupting filament and associated CME observed by Hinode, STEREO, and SOHO"

A. Bemporad¹, G. DelZanna², V. Andretta³, M. Magri³, G. Poletto⁴, Y.-K. Ko⁵

¹INAF-Osservatorio Astronomico di Torino (IT), ²Mullard Space Science Laboratory, London (UK), ³INAF-Osservatorio Astronomico di Capodimonte, Napoli (IT) ⁴INAF-Osservatorio Astrofisico di Arcetri, Firenze (IT), ⁵Naval Research Laboratory, Washington DC (USA)

INAF – Italian National Astrophysics Institute

OATo – Torino Astronomical Observatory

Outline

- The May 7 10, 2007 campaign
- The May 9, 2007 CME:
 - Stereo/EUVI observations: filament structure and expansion
 - Hinode/EIS observations: non thermal line broadening
 - SOHO/UVCS observations: CME plasma parameters
- Conclusions

The Hinode HOP 7 campaign: 7 – 10 May 2007

LASCO CME catalog: - PA: 244° (26°SW) - $v_{lin} \sim 310$ km/s - a ~ -7.4 m/s² Possible CME source: - AR 10953 (11°S, 91°W on 08/05/2007) - H- α filament

STEREO Behind COR1

2007-05-09 13:11:02

The eruption as seen by STEREO/EUVI

- EUVI HeII λ 304 shows a filament expanding southward and turning westward.
- The separation angle between the two Stereo spacecrafts was ~7.2°. High spatial resolution (~1.5"/pixel) \rightarrow triangulation study can be performed.
- Identification of same features in both images \rightarrow **3D structure, 3D expansion**.

Results: Filament structure

3D reconstruction made from 100 pairs of points selected along the filament
The erupting filament is **hook-shaped**, mostly **2-dimensional**

X AR10953

Results: Filament expansion

A. Bemporad – "An erupting filament and associated CME observed by Hinode, STEREO and SOHO"

The eruption as seen by HINODE/EIS

EIS raster: start 13:15, end 14:18 \implies CME start ~ 13:40 latitudes ~ 15°- 40°S \implies CME lat ~ 20°- 45°S

CME observed by EIS?

ion	λ (Å)	logT _{max}
Hell	256.32	4.9
FeVIII	185.21	5.8
FeX	257.26	6.0
FeX	184.54	6.0
FeXI	180.40	6.1
FeXI	182.17	6.1
FeXI	188.23	6.1
SiX	258.37	6.2
SiX	261.04	6.2
FeXII	193.51	6.2
FeXII	195.12	6.2
FeXII	196.64	6.2
FeXIII	201.13	6.2
FeXIII	203.83	6.2
FeXIV	264.79	6.3
FeXIV	274.20	6.3
FeXV	284.16	6.4

Rasters with the 2" slit, separated by 8", 61 exps/raster, 60 s/exp, ~1 h/raster

Plasma emission at different temperatures

The cool filament material disappears above logT ~ 5.6 (~ 4-10⁵ K)

The detection of non-thermal velocities

Non-thermal velocity evolution

In the following rasters the v_{nth} are located at the CME latitudes, fading with time

The detection of non-thermal velocities

Which interpretation?

1) Heating of the surrounding corona by:

- adiabatic compression
- magnetic reconnection

2) Outflows along field-lines opened by the CME (suggested by the line asymmetry? But why v_{nth} changes for different ions?)

3) Plasma turbulence related to reconnections after the CME

The eruption as seen by SOHO/UVCS

ion	λ (Å)	logT _{max}
HI Lyβ	1025.72	4.5
OVI	1031.91	5.5
OVI	1037.62	5.5
SiXII	520.67	6.3

UVCS slit: centered at 5°S, 1.7 R_{sun} Spatial resol.: 56" Time resol.: 120s

Time (h

n_e

21

20

20

21

UVCS coronal plasma diagnostic:

- OVI $\lambda\lambda$ 1032-1037 intensities due to both collisional and radiative excitation;
- By assuming $v_{out} \sim 0$ the I_{rad} and I_{col} of both lines can be easily separated;
- $I_{col} \propto n_e^2 L$, $I_{rad} \propto n_e L \rightarrow I_{col} / I_{rad} \propto n_e$
- Given n_e and by assuming O and Si abundances:

Results: Coronal & CME plasma parameters

Given the longitude vs time curve (STEREO) an estimate for the thickness L_{CME} along the LOS of the CME emitting plasma can be derived $\rightarrow L_{CME} \sim 0.65 \text{ R}_{sun}$ **CME plasma:** $EM_{CME} \sim 8 \cdot 10^{23} \text{ cm}^{-5} = n_e^2 L_{CME} \rightarrow n_e(\text{CME}) \sim 4.2 \cdot 10^6 \text{ cm}^{-3}$ By assuming a **volume** of $(4\pi/3) \cdot 3\text{R}_0 \times 0.65\text{R}_0 \times 0.65\text{R}_0 \rightarrow \text{m}_{CME} \sim 3.3 \cdot 10^{16} \text{ g}$

Summary & Conclusions

During the HOP7 campaign a slow CME occurred on May 9, 2007;

• Stereo/EUVI HeII λ 304 images: erupting filament that expands initially southward and results in a CME expanding around 26°S \rightarrow Filament material undergoes not only a radial acceleration, but also a much stronger tangential acceleration;

• 3D reconstruction from Stereo A/B: the filament has initially a hook-shaped, quasi 2D structure, with the hook base rooted on the Sun, close to the AR. The following expansion is both latitudinal and longitudinal (i.e. superradial);

EIS spectra: first filament eruption detected by EIS reported so far! Spectral lines show strong strong non-thermal velocities (up to ~ 120 km/s) along the eruption path, decreasing with increasing ionization stages → coronal heating? "Fan-shaped" outflows? Plasma turbulence driven by reconnection?

• UVCS spectra: info on the trajectory from Stereo are used to estimate the CME thickness along the LOS \rightarrow the CME is **denser** than the surrounding corona by ~ 60%; the CME mass is $m_{CME} \sim 3.3 \cdot 10^{16} \text{ g}$.