<u>Density measurements at the</u> <u>base of the solar wind</u>

Dr Peter Young Naval Research Laboratory George Mason University

Why is the coronal hole density useful?

- The fast solar wind is believed to originate in coronal holes
- Models of the fast solar wind require boundary conditions defined in the Sun's low atmosphere
- Electron density (pressure) is one of the boundary parameters
- Also valuable to spectroscopists for checking diagnostics and atomic data
- Observation requirements:
 - look on the disk to avoid line-of-sight effects
 - density diagnostics formed at log T = 5.8-6.2

<u>Standard picture</u> Coronal hole density $\approx 1-2 \times 10^8 \text{ cm}^{-3}$ Quiet Sun density $\approx 3-4 \times 10^8 \text{ cm}^{-3}$

Previous work – on disk

- Skylab \bigcirc
 - Esser et al. (1998, ApJ) derived densities of 7-20 x 10⁷ cm⁻³ from Mg VIII
- SOHO/CDS \bigcirc
 - Del Zanna & Bromage (1999, JGR) derived densities of 2-3 x 10⁸ cm⁻³ using Si IX
 - Young & Esser (1999a,b conf. proceedings) derived much lower densities (log $N_{\rm e} = 7.0 - 7.5$) from Si IX and Mg VIII

Necessary to include photoexcitation in atomic models

Example coronal hole – 11 July 2008

Large equatorial coronal hole

(Thanks to EIS CO, Yokoyama-san, for excellent observation!)

Hinode / EIS

Example coronal hole – 11 July 2008

• EIS monochromatic raster images

Coronal hole selection

- Six dark coronal hole areas identified in Fe VIII λ185.21 image
- Spatial pixels summed to yield six coronal hole spectra

EIS coronal hole density diagnostics

Ion	Ratio	Log (<i>T</i> /K)	Photoexc.?
Mg VII	λ280.75 / λ278.39	5.8	No
Si VII	λ272.64 / λ275.35	5.8	Yes
Fe VIII	λ186.60 / λ185.21	5.8	Yes
Fe X	λ257.26 / λ184.54	6.0	No
Si X	λ258.37 / λ261.04	6.1	Yes
Fe XII	λ186.88 / λ195.12	6.1	No

Atomic data from v5.2 of CHIANTI, except Mg VII which are from (soon-to-be-released) v6.0

Mg VII & Si VII diagnostics (log T=5.8)

Si VII is sensitive to photoexcitation

lon	CH Dens	QS Dens	CH Pressure	QS Pressure
Si VII	8.26	8.86	14.06	14.66
Mg VII	(8.58)	8.78	(14.38)	14.58

(Log₁₀ values)

Si X & Fe XII diagnostics (log T=6.1)

Si X is sensitive to photoexcitation

lon	CH Dens	QS Dens	CH Pressure	QS Pressure
Si X	8.17	8.39	14.27	14.49
Fe XII	8.67	8.58	14.77	14.68

(Log₁₀ values)

Fe X \ 184.54 /\ 257.26

- In both quiet Sun and coronal holes the measured Fe X ratios are <u>above</u> the low density limit
- The coronal hole values are higher than the quiet Sun values
- Implies ratio is diagnosing density differences...
- ...but, measurements inconsistent with atomic theory

Fe VIII λ185.21 / λ186.60

- Both lines are strong in coronal hole spectra and comparable in intensity
- Ratio sensitive to photoexcitation

Fe VIII λ185.21 / λ186.60

Ratio approximately constant in coronal holes and quiet Sun

- Taking average ratio values gives:
 - coronal hole density: $\log N_{\rm e} = 7.99$
 - quiet Sun density: $\log N_{\rm e} = 8.09$

Hinode / EIS

Conclusions

- No evidence is found for the very low densities found by Young & Esser (1999a,b)
- Different ions show inconsistent results
 - Si VII, Mg VII, Si X show lower CH densities by 0.2-0.6 dex compared to QS
 - Fe VIII & Fe XII show same density in CH and QS
 - Fe X measurements inconsistent with theory
- Further work
 - need to investigate 'deep-cleaning' of CCD warm pixels
 - update atomic data (Si VII, Si X, Fe X)

Note for EIS Chief Observers

- Please run my study PRY_CH_density if you see a nice coronal hole!
- Low data volume study optimised for S-band operations

Off-limb vs. on disk

Off-limb coronal hole spectra are contaminated by non-coronal hole regions

Fe X λ184.54, 19-Jan-08, 13:35

Coronal holes

SOHO/EIT Fe XII 195