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HR observations with the 1 m SST and the SOT/Hinode show new

properties of penumbra and its impact on the overlying atmosphere.
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Response of the overlying chromosphere to penumbra dynamics:

At any moment of time, short living (∼ 1 min) bright elongated

transients are spread abundantly over the entire penumbra.
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Transients are always associated with Bright Points.
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True model of penumbra must et least explain:

• Complex properties of filaments,

• Nature of their interaction,

• The very formation of penumbra, and

• Its impact on the overlying atmosphere.

Dozens of groups are working on physics of sunspot.

But neither formation of penumbra nor the properties of

interacting filaments and their association with chromospheric

transients, can be understood on basis of these models.

We propose the mechanism that not only explains all the

observed properties of individual filaments, but is part of

the physical process that determines formation of

penumbra and its impact on the overlying atmosphere.
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The solution is based on the collective phenomena in a

dense conglomerate of interlaced flux tubes comprising the

entire sunspot, including umbra.

Densely packed, neighboring filaments inevitably interact.

IN SUCH A CONGLOMERATE
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Splitting of filaments accompanied by the enhanced brightening of

splitting region is natural manifestation of the reconnection:
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Examples of reconnecting filaments. Space-time image (panel 4)

shows several splitting events along the dashed cut (panel 3a).

Much more comes from the post-reconnection processes!



Second Hinode Science Meeting, Boulder, 2008. 7'

&

$

%

The post-reconnection specifics in the photosphere is determined by

(1) The very existence of flux tubes, being in pressure equilibrium

with almost non-magnetic surrounding gaps, i.e.

pext = pin + B2
in/8π; β = 8πpext/B

2
ext � 1; β̃ = 8πpext/B

2
in ≥ 1

(2) Non-collinearity of flux tubes.

(3) Sharp stratification of the atmosphere.
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THE GRAVITY TURNS ON, LEADING TO APPEARENCE OF BOW SHOCKS AND JETS.
VERY IMPORTANT:
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THE PROCESS OF FRAGMENTATION IN SUNSPOT AND THE BRANCHING OUT OF

REACH THEIR CRITICAL RADII, FORMING THUS "UNCOMBED" PENUMBRA.
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MOST IMPORTANTLY:

shock

g
THE RECONNECTION FACILITATES

THE ONSET OF AN ADEQUATE
SCREW PINCH CONFIGURATION!

LONG CYLINDRICAL FLUX TUBES
ARE INTRINSICALLY UNSTABLE 
AND TWIST INTO A KINKED HELICAL
SHAPE WITH THE PITCH ANGLE

θ = Bϕ Bz

KRUSKAL−SHAFRANOV THEOREM:

BP

Screw pinch configuration is dynamically stable if the safety factor

q ≡ h
L

< 1

L is the length of flux tube, h is the pitch:

h(R) ≡ 2πR

tanθ
= 2πRBz

Bφ

This determines profiles of magnetic field, current and temperature

inside flux tube depending on the mode, m of helical perturbation.
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m=1 m=4m=3m=2

Solution for m = ±1 is the Lundquist field:

Bz(r) = B0J0(µr), Bφ(r) = B0J1(µr); µ ≡ 2π
h

jz(r) = B0c
2π

µJ0(µr), jφ(r) = B0c
2π

µJ1(µr); h ≡
2πrBz

Bφ

B

B

j

j

ϕ

z

z

ϕ

Solution below the first 

µr

zero,     R < 2.404µ
πR = 2   R/h = 0.523µ

R = 5 10   cm6

h = 6  10   cm7

B   = 1000 Gz

THE SHADED AREA IS WHERE

THE ENHANCED HEATING 

OCCURS, PROVIDING COOLER

INTERIOR & HOTTER WALLS
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Temperature profile across the twisted flux tube is:

Tmax(r) ' S2(r) j2(r)/(8σκ‖),

S(r) is the length of helical magnetic line, S(r) = L
√

1 + B2
φ/B2

z .

S is minimum at the axis, and rapidly grows toward periphery.

Tmax

r/R1

L

B z

r

S

S

r/R

Bϕ

α

Presence of the factor S2(r) leads to hollow temperature profiles.

Pitch: h ≡
2πRBz

Bφ
, Radius, Magnetic fields, Safety factor -

q ≡ h
L
, are directly and independently measurable.
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Space-time images allow to measure the pitch, h = ∆x(T/∆t):
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e.g. (1) h ' 550 km; (2) h ' 700 km; (3) h ' 400 km.
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Impact on the overlying atmosphere.

Under action of gravity
⋃

-shaped reconnection product accelerates.

At transonic velocities in front of it a bow (detached) shock is

formed as it usually occurs in cases of blunt bodies moving with

supersonic velocities.

t 1

t2

t 3

penumbra
towards

α

g

Under a certain angle bow shock should appear as a double bright

structure, moving in direction perpendicular to its long axis.

This is exactly what we observe in vast majority of cases!



Second Hinode Science Meeting, Boulder, 2008. 14'

&

$

%

17 November 2006

SOT/Hinode   Ca II H

SIMPLE THOERY OF BOW SHOCKS ALLOWS FULL
QUANTITATIVE ANALYSIS
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Summary

All the observed properties of penumbra and and its

impact on the overlying atmosphere are the natural

consequences of the ongoing reconnection processes.

• The very formation of filamentary penumbra.

• Multiple splitting of individual filaments.

• Enhanced brightening of footpoints (region of reconnection).

• Presence of dark cores in the filaments.

• Intrinsic twist of filaments with safety factor q = h/L < 1.

• Resulted dynamic stability (long lifetimes) of filaments.

• Generation of electric currents and flows that mimic a screw

pinch configuration.

For details and quantitative analysis see our poster P6 − 6.

Thank you.
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Magnetic cylinder in dynamic environment is subject of

inevitable fragmentation process due to nonlinear

instabilities.

Interaction of flux tube with wave fields and/or convection

leads to ”Magnetosonic Streaming” (Ryutova, Kaisig &

Tajima, 1996, Theory and numerical simulations):

• Absorption of the momentum leads to the generation of upward

and downward mass flows along the filament.

• Absorption of the angular momentum leads to the generation of

rotational mass flows across the filament.

Most importantly the induced flows lead to redistribution

of magnetic field and density inside flux tube causing

fragmentation and appearance of the inner sub-structure.

Illustrated area in numerical simulations (of a single box) is 20× 20

in units H, characteristic width between neighboring filaments.
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Final state of the evolution in case of
higher modes
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ρ −7= 2  10    g/cm3 R = 50 km ,
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Generated currents range:

−2j= 2.1 10 A/m2 −  1.7  A/m2
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