3D Structure of the Sunspot Umbra

Svetlana Berdyugina

Kiepenheuer Institute for Solar Physics, Freiburg

Collaborators: Nadine Afram, ETH Zurich Dominique Fluri, ETH Zurich Bruce Lites, HAO, Boulder Sarah Mägli, ETH Zurich

Molecules in sunspot umbra

• Sunspot umbra: TiO

• Sunspot penumbra

Sunspots: 3D structure

Simultaneous inversion of Fe I and OH lines in the IR

Mathew et al. (2003)

Sunspots: 3D structure

• Simultaneous inversion of Fe I and OH lines in the IR

Mathew et al. (2003)

Umbra: 3D structure

Observations

- Hinode, Nov 2006
- Full Stokes spectro-polarimetric imaging
- 0.3" resolution
- 6301-6303 Å region

Inversions

- Fe I, CaH (B-X, PBR), TiO (γ,γ', ZR)
- SPINOR: Polar. RT, chem eq.
 (Berdyugina et al., 2000-2006)
- T, B, γ, χ, P, v, etc. (h)
- Umbra (~30,000 pix)

\Rightarrow 3D model

Umbra: 3D structure

Observations

- Hinode, Nov 2006
- Full Stokes spectro-polarimetric imaging
- 0.3" resolution
- 6301-6303 Å region

Inversions

- Fe I, CaH (B-X, PBR), TiO (γ,γ',
- SPINOR: Polar. RT, chem eq.
 (Berdyugina et al., 2000-2006)
- T, B, γ, χ, P, v, etc. (h)
- Umbra (~30,000 pix)

\Rightarrow 3D model

Umbra: Spectrum synthesis

Umbra: Spectrum synthesis

Umbra: 3D structure

Magnetic field strength

• Temperature

 $\log \tau = 0, -1, -2, -3$

Umbra: Fine structure

Penumbral edge

Peripheral Umbral Dots

Central Umbral Dots

Dark Umbra

Darkest Umbra

Umbra: Average models

• Temperature

Magnetic field strength

Penumbral edge
 Umbral dots
 Dark core
 Maltby et al. (1986), umbral cores

Umbral dots: Filamentary structure?

• TiO band filter

SST, Berger & Berdyugina (2003) Zakharov et al. (2005)

Summary

- Atoms and molecules probe different heights in spots ⇒ 3D structure!
- Molecular blends (TiO) can mimic a larger splitting of Fe I 6302 lines
- Temperature gradient in deeper layers is steeper for warmer structures
- Umbral "dots" w/r to dark umbra:
 - Peripheral: $\Delta T_p = +450$ K, $\Delta B_p = -300$ G (log $\tau = 0$)
 - Central: $\Delta T_c = +250K$, $\Delta B_c = -200G$
- Umbral "dots" seem to have a filamentary structure similar to penumbral filaments
- Darkest part of the umbral nucleus: T = 3800K, B = 3150G (log $\tau = 0$)
- Outlook: A homogeneous sample of sunspot inversions to investigate the internal structure depending on the spot size

Thank you!