Magnetic Flux Loss & Flux Transport in a Decaying Active Region

M. Kubo, B. W. Lites (HAO/NCAR), T. Shimizu (ISAS/JAXA), K. Ichimoto (Kyoto University), and Hinode/SOT team

2 October 2008

Flux loss of sunspots: How and Where

 Many small magnetic elements move away from sunspots. (Moving magnetic features: MMFs, Harvey & Harvey 1973)

<u>Ground-based observations</u> (Martinez Pillet 2002; Kubo et al. 2007): The net magnetic flux carried by all the MMFs exceeds the flux-loss rate of the sunspot.

• "Magnetic flux cancellation" (Martin et al. 1985) often occurs around the outer boundary of the moat region.

Flux loss of sunspots: How and Where

- How much magnetic flux is carried away from the sunspot to the outer boundary of the moat region?
- How much magnetic flux is removed from the photosphere?

Hinode/SOT allows us, for the first time to measure flux change without any effects of atmospheric seeing through a lifetime of (small) sunspots.

Hinode/SOT observation of AR NOAA10972

- Small bipolar sunspots almost disappear in two days (6-Oct-2007 ~ 8-Oct-2007).
- Many moving magnetic features are observed around the sunspots.
- Magnetic flux cancellations are observed around the center of the active region.

Upper: continuum intensity Lower: flux density of vertical fields

Following sunspot & moat region \rightarrow 3 regions

2 October 2008

Evolution of total magnetic flux

• Magnetic flux normal to the solar surface

$$F = \sum_{r=r_1}^{r=r_2} \frac{1}{\cos \theta} f \mid B \mid \cos \gamma$$

SP observations

- $\boldsymbol{\theta}$: heliocentric angle
- f : filling factor
- B : magnetic field strength
- γ : inclination with respect to the local vertical

*Projection effects are corrected.

Evolution of total magnetic flux

Flux change rates in the period between two red lines (06:15 – 21:26 on Oct 7)

- The sunspot significantly decayed (but still survived).
- No significant flux emergence (form visual inspection)

2 October 2008

Flux increase and decrease rates

"dF/dt" is estimated by a linear fit to the flux change from 06:15 to 21:26 on October 7, 2008.

* Negative dF/dt indicates a decrease of magnetic flux for both polarities.

2 October 2008

Definition of radial flux transport rate (F_v)

F(r) : Magnetic flux density normal to the solar surface (SP data)

 v_r (r): Radial component of horizontal velocity (The local correlation tracking technique is applied for line-of-sight magnetograms with NFI)

Summary of magnetic flux budget

" F_v " is averaged over the flux transport rates obtained in the same period as "dF/dt".

Flux transport for sunspot's polarity

• The total of flux decrease rates in the sunspot and unipolar regions are similar to the flux transport rate at the outer boundary of the unipolar region.

→ Most of magnetic flux disappeared in the sunspot and the unipolar regions are transported to the mixed polarity region.

• The transported magnetic flux is larger than the increase of the positive flux in the mixed polarity region and the flux transport rate at its boundary.

Flux transport for sunspot's polarity

• The total of flux decrease rates in the sunspot and unipolar regions are similar to the flux transport rate at the outer boundary of the unipolar region.

→ Most of magnetic flux disappeared in the sunspot and the unipolar regions are transported to the mixed polarity region.

• The transported magnetic flux is larger than the increase of the positive flux in the mixed polarity region and the flux transport rate at its boundary.

2 October 2008

Magnetic flux cancellation at moat boundary

The flux loss rates of positive and negative elements balance each other in the mixed polarity region

→ Magnetic flux cancellation!

$$F_v = 0.4$$

dF/dt = - 2.3

Negative magnetic elements

Unit : [10¹⁵ Mx/sec]

2 October 2008

Conclusions

- Most of the magnetic flux removed from the sunspot (and inner moat region) is transported to the outer boundary of the moat region as moving magnetic features.
- The transported magnetic flux is removed from the photosphere by the flux cancellation at the outer boundary of the moat region.

Thank you!

2 October 2008

Horizontal velocity

2 October 2008

Horizontal velocity (cont.)

The averaged horizontal velocity in the unipolar region is 0.5 km/sec.

 \rightarrow This is similar to averaged speed of MMFs and moat flow in previous works.

Flux transport rate [F,(r)] vs. Time

* The positive Fv (r) indicates magnetic flux moves radially outward for both polarities.

2 October 2008

Flux transport rate [F,(r)] vs. Time

* The positive Fv (r) indicates magnetic flux moves radially outward for both polarities.

The outer boundary of the moat region is ~ 30" from the sunspot center

Overestimation of flux transport at sunspot boundary

- The positive flux carried away from the sunspot region is bigger than decrease of the positive flux in the sunspot region.
 - \rightarrow The flux transport rate is overestimated at the outer boundary of the sunspot.
- This tendency was also reported in the previous work with lower (1") spatial resolution (Kubo et al. 2007).

Fuzzy, quick moving magnetic elements

Flux transport rate at the outer boundary of the sunspot:

- Magnetic flux: MMFs with small horizontal velocity and large magnetic flux
- Horizontal velocity: Fuzzy magnetic elements with large outward motions

(Apodization window is gaussian with 1" FWHM in the LCT)

2 October 2008

"Beyond Discovery – Toward Understanding" Second Hinode Science Meeting

Magnetic flux "cancellation"

- One magnetic polarity element collides with another polarity element.
 - \rightarrow Disappearance of the magnetic elements
- The outer boundary of the moat region is one of major cancellation sites.
 (Martin, Livi, & Wang 1985; Yurchyshyn & Wang 2001; Chae et al. 2004; Bellot Rubio & Beck 2005)

Emerging U-loop

Zwaan 1987