Results from the Hinode/SUMER campaigns

L. Teriaca,
Max-Planck-Institut für Sonnensystemforschung
SUMER/Hinode past joint observations and campaigns

SUMER following Hinode targets during commissioning
• October and November 2006

Spring 2007 campaign
• Campaign from April 2 to 29
• Run 22 observing proposals + TOO observations

Fall 2007 campaign
• Campaign from November 2 to 16
• Run 14 observing proposals

April 2008
• Observations in the WHI program from 10 to 16 April

June 2008
• Joint observations
Spring 2007 campaign

Teriaca: Spatial and temporal evolution of the temperature response during VUV explosive events
Gomory: Energy transport and dynamics in/above the network and coronal heating mechanisms
Landi: The thermal structure of off-disk quiet Sun and active region plasmas
Teriaca: The average Doppler shift of coronal lines on quiet and active regions
Madjarska: Small-scale transient flows in the quiet Sun and active regions
Madjarska: Coronal Bright Point plasma characteristics and evolution
Solanki: Centre-to-limb variation of active region and quiet Sun brightness
Doyle: Further insight into the spicules/blinker connection: a search for blinkers using EIS
Doyle: Oscillations in chromospheric and coronal bright points
Doyle: Armagh explosive event study

Fontenla: Quiet-Sun radiance distribution and UV variability
Marsh: MHD wave propagation
Teriaca: Detection of waves in the solar atmosphere
Bewsher: Dynamic events in the network
Doschek: Transition region T_e diagnostics
Doschek: DEM of active structures above the limb
Innes: Chromospheric heating in quiet Sun - Talk 1-9
Landi: Diagnostics of quiescent active region loops
Kamio: Velocity field in a coronal hole (paper in preparation) – Talk 7-6

Fall 2007 campaign

G. Del Zanna, Multi-wavelength observations of coronal hole plumes at solar minimum Talk 5-2
K. Reardon, Spectral Observations of Spicule Dynamics
D. Innes, Temperature, density and 3-D structure of active region loops
D. Innes, Doppler shifts in X-ray jets - Talk 1-9
D. Innes, 3-D structure and evolution of filaments/prominences
M. Madjarska, Coronal holes boundaries evolution
S. Imada, Waves in front of/back side of (north/south) polar jets
M.P. Miralles, Characterization of Fast and Slow Solar Wind Source Regions
S. Kamio, SUMER campaign - coronal hole
J.G. Doyle, Magnetic structure of macrospicules
K. Matsuzaki, DEM analysis in lower corona
L. Teriaca, Detection of waves in the solar atmosphere
D. Rabin, Coordinated observations with EUNIS
S. Patsourakos, Moss Observations

black Nothing done/No infos
Blue: Work in progress
Red: paper in preparation
Red: Paper accepted/published

April 2008 observations during the WHI

S. McIntosh, Characterizing the energetics and dynamics of the quiet Sun -Talk 1.2, Poster 1.5

June 2008 observations

A Pietarila, Chromospheric network structure and dynamics
G. Poletto Plume study
We observe a downflow pattern compatible with the presence of an Inverse Eveshed flow. The flow is visible in lines from 0.08 to 0.18 MK. It occurs in a collar of radially directed filamentary structures with widths < 1 Mm and inclined between 10° and 25° relative to the solar surface.
SUMER observations of a sunspot in November 2006
Teriaca et al. 2008, in preparation
• The inverse Evershed flow is visible in a region roughly twice the penumbra.
• It seems occurring in far-reaching loops that only above the umbra and (extended) penumbra are cold enough to be seen in Si IV.
• Further out, emission is dominated by strong downflows at the footpoints of hot (> 2 MK) loops.
Spatial and temporal response of the solar atmosphere during VUV explosive events
Cauzzi, Reardon, Teriaca, Pitterle, Curdt

Explosive events

XRT

SUMER Si IV 140.2 nm
IBIS Ca II 854.2 nm

Positive
Negative
Chromospheric velocity: 3 min power map

- Explosive events are located at the edges of the magnetic regions, at locations where the chromospheric fibrils stop being visible.
- We are searching for chromospheric signatures either “vertically” either following the magnetic connectivity as shown by the fibrils.
- XRT and EIS simultaneous observations are being investigated to study these events in the context of the whole solar atmosphere.
Plume campaign
Nov 2007
Del Zanna, Teriaca, Wilhelm, Andretta

34 h SUMER raster scan acquiring at each slit position several 4 nm wide spectra providing diagnostics of density, temperature and abundance to be combined with / compared to EIS data.
The present

A SUMER/Hinode campaign devoted to the study of the polar coronal holes is currently under way with about 8 observing programs being run.

The future

With SUMER still performing very well, we look forward for more opportunities of join forces with Hinode and other space and ground facilities to serve the scientific community.