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Heating mechanisms

Alfven wave model (Alfven 1947, Uchida & Kaburaki 1974,
Wenzel 1974).

Alfven waves can carry enough energy to heat and maintain
a corona (Hollweg et al. 1982, Kudoh & Shibata 1999)

Waves may be created by sub-photospheric
motions or by magnetic reconnection events.
They propagate into the corona and dissipate
their energy (linear & nonlinear mechanisms)

Mode conversion: Alfven waves convert into longitudinal
modes during propagation, which can steepen into shocks
and heat the plasma (Moriyasu et al. 2004)




Heating mechanisms

footpomt shuffling - braiding, twisting,...

/\ \)/ \/ = ubiquitous, sporadic and impulsive
() \/ releases of energy in current sheets
/ / (nanoflares Parker 1988)

® Nanoflare-reconnection model

(Porter et al. 1987, Parker 1988).

® Both models may explain observed
intermittency and spiky intensity
profiles of coronal lines (Parnell &
Jupp 2000, Katsukawa & Tsuneta

2001, Moriyasu et al. 2004).
How to recognize both mechanisms Ex

when they operate in the corona!
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Observational facts

® Energy release processes in the Sun, from - tSh'm'ZU et al. 1995
solar flares down to microflares are found . ‘
to follow a power law distribution in
frequency (Lin et al. 1984; Dennis 1985).
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® Main contribution to the heating may come from smaller
energetic events (nanoflares) if these distribute with a power

law index 0 > 2 (Hudson 1991).

® Studies of small-scale brightenings have shown a power law
both steeper and shallower than 2 (Krucker & Benz 1998,

Aschwanden & Parnell 2002).




Purpose

® Propose unique observable signatures of Alfven wave heating
and nanoflare-reconnection heating.
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Purpose

® Propose unique observable signatures of Alfven wave heating
and nanoflare-reconnection heating.
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Purpose

® Propose unique observable signatures of Alfven wave heating
and nanoflare-reconnection heating.

. . 2
r_» Different characteristics of wave

convective motions

reconnection event

J

modes along magnetic flux tubes, I

Different distribution of shocks
and strengths in the tubes

. J

Distinctive flow patterns along the tubes
Distinctive X-ray intensity profiles
Distinctive frequency distribution of heating events

between the models: distinctive power law index




Numerical model

® |nitial conditions
To= 10* K, constant 100000 km

Po=25x 107 g cm3 /\

po = 2 x 10> dyn cm-?

Bo = 2300 G, with apex to base
area ratio of 1000

Hydrostatic pressure balance up to
800 km height. After px(height)
(Shibata et al. 1989)

J

d
® |[.5-D MHD code @70 5 =
® CIP-MOCCT scheme (Yabe & Aoki 1991,
Stone & Norman 1992, Kudoh et al. 1999)
with conduction + radiative losses (optically

thin & thick approximations)

Torsional Alfvén waves created by a random
photospheric driver.Also monochromatic
waves




Nanoflare heating function
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® Artificial injection of energy: we

assume only slow modes are created
Photosphere

® Heating events can be:
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- Uniformly distributed along loop o

- Concentrated towards footpoints

® Energies of heating events can follow
- A uniform distribution

- A power law distribution v
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Results



Alfven wave heating

Temperature

. . Mean Temperature

30
Length alang the loop [x 1000 km]

time= 0.00 min

Loop heated uniformly

40 60 so 100 Satisfies RTV scaling law
olong the loop [x10000 k] (Moriyasu et al. 2004)
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Alfven wave heating
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Strong slow/
fast shocks are
ubiquitous in
the corona

Spicules easily
created (Kudoh &
Shibata 1999)




Alfven wave heating

Poloidal Velocity

time= 0.00min

40 60 80 100
along the loop [x 10000 km]

High speed flows are
obtained
<v> ~ 50 km/s
Vmax > 200 km/s




Alfven wave heating

Doppler velocity — Alfvén wave o
Doppler velocities

calculated from Fe XV
emission line, using
CHIANTI atomic
database
Red shifts observed at

0 10 20 30 40 50 footpoints
Length olong the loop (half) [Mm]

Agreement with observations in QS!?




Alfven wave heating

Alfvén wave heating
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White noise
spectrum
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[For <vp?>!"?2 21.3 km/s a corona is created]




Alfven wave heating

Alfvén wave heoting (monO) ® [he 100 - 150 s range IS
the more efficient

Shorter periods do not
carry sufficient energy
into the corona (large
dissipation)

Larger periods produce
too strong shocks that
disrupt energy balance
in the corona
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monochromatic waves




anoflare heating
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Nanoflare heating

Nanoflare heating
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Nanoflare heating
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Nanoflare heating

Poloidal Veloceity

time= 0.00min

0 20 40 80 80
Length along the loap [x 10000 km]

Footpoint

<v>~ |5 km/s
Vmax > 200 km/s

Poloidal Veloeity

time= 0.00min

0 20 40 a0 a0
Length along the loop [x 10000 km]

Uniform

<v>~ 5 km/s
Vimax < 40 km/s




Nanoflare heating

Doppler vel.—Nanoflare uniform

Doppler vel.—Nanoflare footpoin
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Footpoint Uniform

Doppler velocities from Fe XV emission line (CHIANT]I):
blue shifts at footpoints

Agreement with observations in AR (Hara et al. 2008)




NN
o
Illlll

co
o
TIT[TToTT

biquitous stron
slow and fast
shocks

[a—y
o
l'lll'lll'lll'lll'l

Height [x 1000 km]
0o
S

|

—\

Simulating observations with Hinode/XRT
Model (100000km loop)
P < \;J?;Jtance [310(\0 kr2no]

- \

_~ Top of TR

o
O

Intensity [DN s™' pixel™]
o
Intensity [DN s™" pixel™]

480 500 480 500

time [min] time [min]
Height = 12820 km Height = 31565 km




Simulating observations with Hinode/XRT

Model (100000km loop)

S
o
T

co
o

Nanoflare
footpoint

mall peaks are
leveled out

[a—y
o
T TITTTTTT T TIT T

Height [x 1000 km]
0o
S

|

—-40 \—20 0 ! 20
S Digtance [x 10(‘0 km]
- \

\

.~ Topof TR

o
@

Intensity [DN s™' pixel™]
o

360 380 400 360 380

time [min] time [min]
Height = 8473 km Height = 31565 km




Simulating observations with Hinode/XRT

Model (100000km loop)
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Intensity histograms
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Inten5|ty hlstograms
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Intensity hlstograms
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Inten5|ty hlstograms
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Conclusions

Alfven wave heating / uniform heating > QS loops!?

Nanoflare-footpoint heating > AR loops!?
Observational signatures

Heating Mean & max Doppler vel.  Intensity Mean
model velocities(km/s) (Fe XV) flux power law

Alfven <v>~ 50 red shifts ~ | bursty <0>>2
wave Vmax > 200 |0 km/s  |everywhere| constant

Nanoflare <v>~ |5 blue shifts ~ |bursty close|2><§>>15
footpoint Vmax > 200 30 km/s to TR decreases

Nanoflare <v>~ 5 blue shifts ~ Flat <0> ~ |
uniform Vmax < 40 |0 km/s  |everywhere| decreases

Antolin et al.(2008), Ap| 687




