

Active region loops: Hinode/EIS observations

D. Tripathi¹, H.E. Mason², B.N. Dwivedi³, G. Del Zanna¹, P.R. Young⁴

1) UCL, Mullard Space Science Lab, UK

2) DAMTP, University of Cambridge, UK

- 3) Banaras Hindu University, India
- 4) Naval Research Laboratory, USA

Coronal loops: Open questions

- Loops are fundamental building blocks of active regions:
 - Studying coronal loops will help to understand the mechanisms responsible for active region heating and coronal heating in general.
- Questions of prime importance:
 - Loop structures appear fuzzier at higher temperatures: is it real or just the matter of spatial resolution?
 - What are the plasma flow structures in the active region loops?
 - What are the values of densities and the filling factors of a coronal loop? How do they vary along the loop length?
 - Are active region loops **iso-thermal or multi-thermal** along the LOS? How does the temperature vary along the loop length?

Coronal loops: EIS observations

- We can measure flows with a precision of ±3 km/s in spatially resolved coronal structures simultaneously at different temperatures from log T = 5.6 MK (Fe VIII) to log T = 6.4 (Fe XV).
- We can measure electron density more precisely than ever before and therefore, filling factors at different temperatures simultaneously.
- We can study temperatures along the LOS using emission measure analysis.

Overall intensity and flow structure

Fe X 184

Velocity Range = ±30km/s

Velocity Range = ±30km/s

Flows at foot points of loops

The foot point regions show red-shifted emission at lower temperatures. However, blue shifts dominate at high temperatures.

Densities along the loop

BG→ Background

Similar values for densities were obtained for loop B.

Filling factor along the loop

Filling factor $\Phi = EM / (h. N_e^2)$ (Porter & Klimchuk (1995), Cargill & Klimchuk (1997)

	Fe XII					Si X			Mg VII	
Height	h(")	N_e	ϕ		N_e	ϕ		h(")	N_e	ϕ
(Mm)										
		Cm⁻³			CM-2				cm ⁻³	
0	7	9.83	0.02		10.00	0.00		20	9.14	1.79
5	8	9.77	0.02		9.91	0.01		17	9.13	1.71
9	6	9.63	0.06		9.70	0.06		15	9.10	1.48
14	10	9.48	0.07		9.49	0.14		15	9.07	0.84
18	10	9.32	0.15		9.35	0.26		15	9.02	0.56
22	13	9.22	0.20		9.18	0.43		10	9.07	0.28
26	12	9.16	0.29		9.02	1.03				
30	11	9.13	0.37		8.88	2.11				
34	11	9.04	0.47		8.79	2.86				
38	10	8.90	0.79		8.72	3.25				
42	11	8.73	1.30		8.60	4.14				
46	10	8.58	2.63		8.42	7.40				
49	7	8.53	4.52		8.22	18.73				
53	12	8.52	3.11							
56	10	8.55	3.66							
60	10	8.52	4.21							
63	9	8.52	4.57							
66	11	8.50	4.41							
70	12	8.51	3.80							
73	12	8.50	3.89							

Temperature: EM-Loci

EM [T_e] = I_{obs} /[A (b) G(N_e,T_e)]

OCI I_{obs} = Background removed observed intensities A(b) = Abundances (Coronal Abundance) $G(N_e, T_e)$ = Contribution function

Warren et al. (2008) showed that the loops are "mildly multi-thermal".

0.5

1.0 1.5 Temperature (MK) 1.0 Temperature (HK)

1.5

0.5

1.0 Temperature (MK)

0.5

1.5

1.0 1.5 Temperglure (NK)

0.5

Summary and Conclusion (1)

- In lower temperature lines red shifts (downflows) are seen all along the loop being strongest at foot points.
- For higher temperatures red shifts are seen near the loop top, but turn to blue shifts towards the foot point.
 - This is indicative of hot material evaporating and cool material condensing.

Summary and Conclusion (2)

- The N_e along the loop decreased with increasing height. At a given location on the loop we obtained different densities, using spectral lines forming at different temperatures.
- We obtained a very low value of filling factor (0.02 0.05) at log T = 6.1 MK and a filling factor close to 1 at log T = 5.8 MK towards the foot point of the loop.
- The plasma in the loop along the LOS is "Mildly" MULTI-THERMAL (at least towards the foot point). The temperature increased from 0.8 to 1.5 MK from foot point to loop top.
 - The loop is comprised of many unresolved strands which are being heated separately (?)