

A Study of Solar Polar Field Using SOHO/MDI and Hinode Observations

Yang Liu Stanford University

Motivation

Tsuneta et al. 2008

10/01/2008

Motivation

2007.03.10_11:49:30

MDI observation taken in March 2007

10/01/2008

Motivation

Lifetime of magnetic elements in polar regions:

- Deng et al. (1999), after tracking 1300 elements in high latitude, found that the lifetime of elements varies from several hours to more than 58 hours;
- Varsik et al. (1999) reported the lifetime of elements ('knots') is longer than 7 hours but shorter than 24 hours;
- Benevolenskaya (2007) found ``the polar magnetic elements have a tendency to be present for about 1-2 days";
- Thus, it is useful to give a statistical estimate of lifetime.
- Solar rotation rate in high latitude:
 - Many publications with various methods. Junwei Zhao suggests, with this set of data, it's better to use image crosscorrelation method.

1. Method for lifetime estimate

Manually track each magnetic elements to measure the lifetime of this element.

Lifetime of magnetic elements

Lifetime (more detail)

Lifetime versus latitude

10/01/2008

Lifetime versus flux

Cancelled flux is about 28% of total flux (29% of total area, 38% of total elements).

Comparison between MDI and Hinode

Data taken from 12:02:19-14:55:48 (Tsuneta et al. 2008)

2. Method for rotation rate at high latitude (image cross-correlation)

- Remap magnetograms onto Carrington coordinates;
- Average certain number of remapped images to beat down noise (here we average 60 mags);
- Divide the average image into strips along the latitude with a bin size of 5 degree;
- Correlate the corresponding strips from a pair of remapped magnetograms with a certain time lag between them (here we choose a 2-hours lag). The cross correlation code, cross_cor_taylor.pro, developed by G. H. Fisher at Berkeley, allows sub-pixel shifts to find the position of the maximum.

10/01/2008

Hinode Workshop

Methodology

An example of a pair of strips to be correlated.

Hinode Workshop

Solar rotation (different lags)

15

Summary

Magnetic elements in high latitude during solar minimum

- Average lifetime of dominant polarity elements is 21.8 hours, and 1.6 hours for opposite polarity elements;
- 63% of elements with a sign opposite to the dominant polarity appear as a bipole, and 67% disappear during cancellation;
- Lifetime of elements is found to be related with the size of the elements- this agrees with lifetime of the elements in quiet Sun found by Hagenaar et al. (1999).

Solar rotation rate at high latitude:

■ The result from this work agree with the results derived using cross-correlation and spectroscopic methods, and also agree with results from some element tracking work when the sample of tracked elements is large (e.g. Deng et al. 1999). 17