

On the relationship between coronal jets and plumes

N.-E. Raouafi

2nd Hinode Science meeting 29 Sep. – 3rd Oct. 2008, Boulder, Colorado Polar coronal jets vs. plumes

Literature: no connection between these prominent polar structures

Polar coronal jets vs. plumes

- Sharp edged structures collimated by newly open magnetic fields
- ✓ Typical width: ~ 10 Mm
- ✓ Reach coronal heights of 10⁵ 10⁶ km
- ✓ Typical lifetime: seconds tens of minutes
- ✓ Plasma outflow speed 100 1000 km s⁻¹

- ✓ Hazy structures: no clear edges
- ✓ Typical width: ~ 40 Mm

Pixel

- ✓ Reach coronal heights up to 30 Rsun
- ✓ Typical lifetime: hours days
- Plasma in quasi-static state up to about 2 Rsun

Jets vs. Plumes: common properties

Formed by reconnection of emerging bipolar flux with the ambient field

Can these prominent coronal Rooted \checkmark coincidi structures be related? How?

Of episodic nature

Jets Shibata et al. 2007

 10^4 km

 10^3 km Photospheric nanoflares (what?

B EUV Jets/EUV microflare

ansition regio

Plumes Wang & Sheeley 1995

plume

Arcsec

2006/12/17 21:27:45

(a)

(b)

Observations

Observations of the southern polar coronal hole on April 7 – 8, 2007, from

✓ X-ray data from Hinode/XRT ;

✓ EUV data from STEREO/SECCHI/EUVI;

 ✓ SOLIS/VSM LOS-chromospheric (Ca II 8542 Å) magnetograms: footpoints of jets & plumes.

> 28 X-ray and EUV jet events are identified

SOLIS/VSM LOS-chromospheric (Ca II 8542 Å) magnetogram

Observations

20070407 03:32 UT 20070407 04:00 UT 20070407 06:57 U -750 -800 y-y₀ (Arcsec) -850 -900 xj1 xj5 xj3 xj4 -950 -1000-200 -100 0 100 200 -200 -100 0 100 200 -200 -100 100 200 0 x-x₀ (Arcsec) x-x₀ (Arcsec) x-x₀ (Arcsec) 20070407 03:34 UT 20070407 04:01 UT 20070407 06:31 UT -750 -800 y-y₀ (Arcsec) -850 -900 -950 -1000 **EUV** 20070407 10:31 UT 20070407 08:01 UT 20070407 08:31 UT -750 -800 y-y₀ (Arcsec) -850 -900 -950 -1000 0 100 200

-200 -100 0 100 200 -200 -100 0 100 200 -200 -100 x-x₀ (Arcsec) x-x₀ (Arcsec) x-x₀ (Arcsec)

X-rays

Observations

X-rays

Latitude distribution of jets & plumes

Modeling of plasma dynamics within polar plumes constrained by SOHO/UVCS observation: Observations are better reproduced when plumes are based more than 10° away from the solar pole.

Raouafi et al. 2007a

SOLIS VSM 630.15 nm

pole for Sep. 2005 from SOLIS/VSM

Latitude distribution of jets & plumes

Conclusions

Among the 28 jets observed in the southern polar hole on April 7-8, 2007:

***** More than 90% of the jets are associated with plume haze.

70% of these events are followed by polar plumes with a time delay rangin limb w Any model aiming to understand jets & plumes must explain both structure in the same time.
All jets both structure in the same time.
Long limb points that contribute to their brightness changes.

Most of jets, and then plumes, are rooted in network elements away from the solar pole.

On the plume footpoints

Polar plume plasma dynamics: best fit case

O VI 1032 line profiles with contribution

from the PP at 15° from the pole

Note the similarity to the observed ones