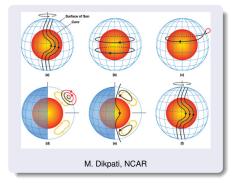
The Solar Surface Dynamo

J. Pietarila Graham, ¹ S. Danilovic, ¹ M. Schüssler, ¹ A. Vögler, ²

¹Max-Planck-Institut für Sonnensystemforschung ²Sterrekundig Instituut, Utrecht University

2nd Hinode Science Meeting 30.09.08

Outline


- Overview of turbulent dynamo theory
- Is there a small-scale solar surface dynamo (SSSD)?
- MURaM solar surface dynamo

Solar global dynamo

Global dynamo

- 22 year cycle
- ≈ dipolar
- many models
 (Babcock-Leighton, flux-transport (Dikpati et al.), surface shear (Brandenburg 2005))

Solar surface dynamo – turbulent (small-scale) dynamo?

Turbulent dynamo

- Stretching of B-field lines by turbulence (Batchelor 1950, Moffat 1978, Parker 1979)
- "Fast" dynamo for chaotic & sufficiently complex flows (Childress & Gilbert 1995)
- Near the surface layer of the sun? (e.g., Petrovay & Szakaly 1993)

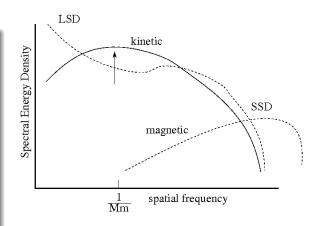
Stretching $\gg \eta$

$$\partial_t \mathbf{B} =
abla imes (\mathbf{v} imes \mathbf{B}) + \eta
abla^2 \mathbf{B}$$
 $Re_M = rac{v_o l_o}{\eta} > Re_M^C o$ dynamo

Turbulent dynamos – well studied

Turbulent dynamos first demonstrated 20 years ago

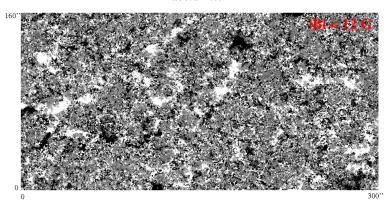
- Realistic: Boussinesq, rotation, convection in spherical shell (Gilman and Miller 1981)
- Idealistic: periodic box $N^3 = 64^3$, $Re_M \approx 100$ (Meneguzzi et al. 1981)
 - Homogeneity and isotropy recovered at small scales
 - Helical and Non-helical



Turbulent dynamos – large & small

2 types of turbulent dynamos

- Large-scale (LSD; helicity, α-effect: mean-field)
- Small-scale (SSD; non-helical)
- solar surface dynamo $(au_{conv} \sim 10 \, \mathrm{min})$
 - $<< au_{rotation}$
 - → no net helicity)



Magnetic carpet (Title and Schrijver 1998; Title 2000)

Lites et al. 2008

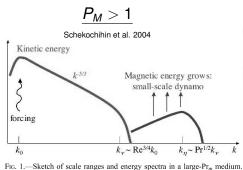
Convectively-Driven Small-Scale Dynamo (Cattaneo 1999)

Temperature $B_{z} = 5.2 \times 512 \times 97 \approx 5 \cdot Re_{M}^{9/4}$ $\frac{4.0 \times 10^{4}}{2.0 \times 10^{4}} = \frac{1000}{1.0 \times 10^{4}} = \frac{1000}{1.0$

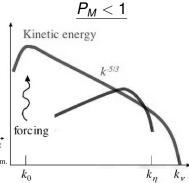
- Boussinesa convection
- no Coriolis force (SSD)
- (see also Cattaneo et al. 2003)

 $Re \approx 200$

1. Shredding of large-scale field by turbulence?

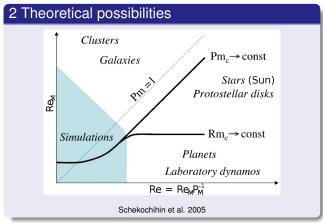

Induced small-scale field

- Timescale for SSD much faster (e.g., Kulsrud & Anderson 1992; Kulsrud 1999)
 - $au_{SSD} \sim$ 10 min (theoretically) \ll other dynamos
- Shredding is algebraic-in-time, SSD is exponential-in-time (e.g., Schekochihin et al. 2005)
- Observation: Very small-scale bipolar regions
 (Φ < 30 · 10¹⁸ Mx) independent of the solar cycle and latitude (for low latitudes) (Hagenaar et al. 2003)



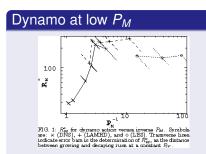
2. $Re \gg Re_M$ (i.e., $P_M \equiv \frac{Re_M}{Re} = \frac{\nu}{n} \ll 1$)

eddies $I > I_n$ stretch B



eddies $I < I_n$ diffuse B

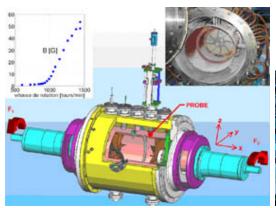
2.
$$Re \gg Re_M$$
 (i.e., $P_M \equiv \frac{Re_M}{Re} = \frac{\nu}{\eta} \ll 1$)





2. $Re \gg Re_M$ (i.e., $P_M \equiv \frac{Re_M}{Re} = \frac{\nu}{n} \ll 1$)

No dynamo at low P_M Laplacian (JLM) spectral □ 4th-order hyper (JLM) O 6th-order hyper (JLM) O 8th-order hyper (JLM) ▲ Laplacian (PENCIL)Brandenburg * 6th-order hyper (PENCIL) △ Smagorinsky (PENCIL) $Re = Re_{M}P_{M}^{-1}$ Schekochihin et al. 2005



$P_M \approx 10^{-5}$ – No Problem

VKS experiment (Monchaux et al. 2007)

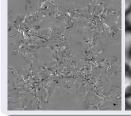
CEA-Saclay - CNRS -ENS-Lyon – ENS-Paris

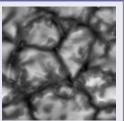
3. Strong stratification & little recirculation

"Last" argument against SSD (Stein et al. 2003)

- Strong stratification
- Little plasma is recirculated in the near-surface layers
- Realistic magneto-convection with open boundaries (Stein et al. 2003): $253 \times 253 \times 163 \rightarrow Re_M \sim 600$

Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal file Prevalent weak vertical field


Estimating true unsigned vertical flux

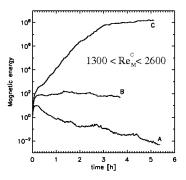

The MURaM code (Vögler et al. 2005; Vögler 2003)

Realistic magnetoconvection

- Strong stratification
- Fully compressible
- Partial ionization
- Radiative transfer
- Open lower boundary
 - (vertical upflows, $\frac{dv}{dz}=0$ for downflows; \mathcal{B}_{hor} not advected into box)
- No rotation
- Parallelized

B_z & brightness

Turbulent solar surface dynamo

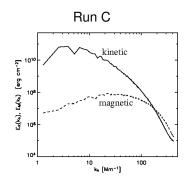

Comparing MURaM with obs.: Strong horizontal field Prevalent weak vertical field

Strong stratification & little recirculation – No Problem

Vögler & Schüssler 2007

Run	$N_{hor}^2 \times N_Z$	Re _M
Α	$288^2 \times 100$	300
В	$576^2 \times 100$	1300
С	$648^2 \times 140$	2600

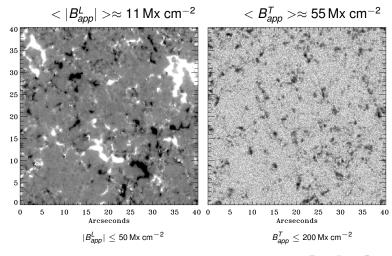
$$1300 \lessapprox Re_M^C < 2600$$


Run C: $E_M \approx 3\% E_K$

Turbulent solar surface dynamo
Comparing MURaM with obs.: Strong horizontal field
Prevalent weak vertical field

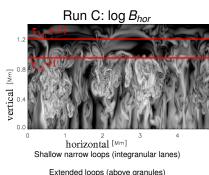
Turbulent small-scale solar surface dynamo for $Re_M > Re_M^C$

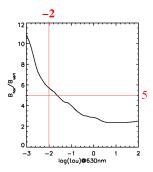
Simulation Comparison


Result	Grid pts.	Re _M	P_{M}	ВС	SSD
Run A	$288^{2} \times 100$	≈ 300	≨ 1	open	N
Stein+	$253^2 \times 163$	≈ 600	≈ 1	open	N
Run B	$576^2 \times 100$	\approx 1300	≨ 1	open	N
Cattaneo	512 ² × 97	≈ 1000	≈ 5	closed	Υ
Run C	$648^2 \times 140$	≈ 2600	≨ 1	open	Υ

(Vögler & Schüssler 2007)

Pervasive horizontal magnetic flux (Lites et al. 2008)



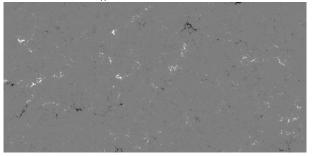

Turbulent solar surface dynamo Comparing MURaM with obs.: Strong horizontal field

Strong horizontal photospheric magnetic field in SSD

(Schüssler & Vögler 2008)

(see also Steiner et al. 2008)

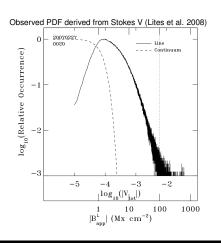
Average vertical field decreases faster with height than

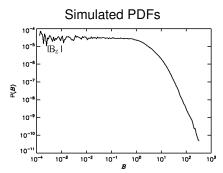


Turbulent solar surface dynamo Comparing MURAM with obs.: Strong horizontal field Prevalent weak vertical field

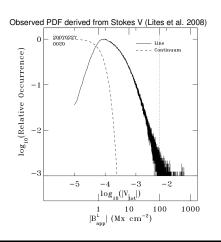
Distribution of vertical field strength

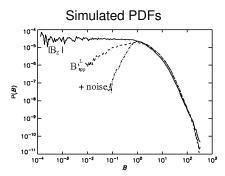
Hinode B_{app}^{L} 220 Mm \times 110 Mm (Lites et al. 2008)


Run C: B_{ave} 4.9 Mm imes 4.9 Mm

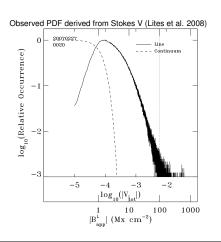


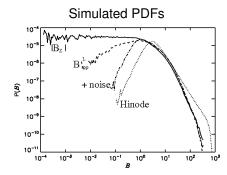
Prevalent weak vertical field



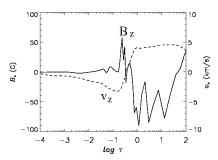

Simulations have prevalent weak field

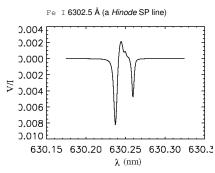
Prevalent weak vertical field




Synthetic observation is also peaked

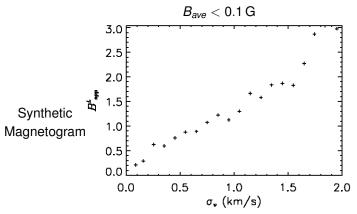
Prevalent weak vertical field




Observed PDF is compatible with monotonic PDF of the *actual* field

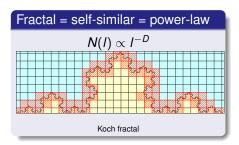
Vertical radiative transfer & turbulence

Vertically averaged field = 0



Absorption profiles Doppler shifted

Vertical radiative transfer & turbulence



Effect increases with variance $(v_z)^{1/2}$ along line of sight

From fractal geometry to true unsigned vertical flux

$$\chi(\mathbf{I}) \equiv \frac{\sum_{\mathbf{i}} \left| \int_{\mathcal{A}_{\mathbf{i}}(\mathbf{I})} \mathbf{B}_{\mathbf{z}} \mathbf{d} \mathbf{a} \right|}{\int_{\mathcal{A}} |\mathbf{B}_{\mathbf{z}}| \mathbf{d} \mathbf{a}}}{\chi(\mathbf{I}) \sim \mathbf{I}^{-\kappa}}$$

(Ott et al. 1992)

(Sorriso-Valvo et al. 2002)

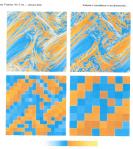
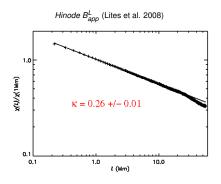
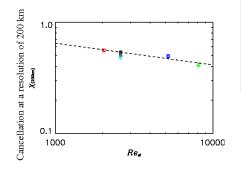



Fig. 3. 3.55of The distinguished signed register of the curry Z at this inv Z for than different box storp, mencly AL=0.00L (x)=x0.05, AL=0.00L

 $\chi(I)$ measures the portion of flux remaining after averaging over boxes of length I

Cancellation is self-similar

$$\chi(\mathbf{I}) \equiv \frac{\sum_{\mathbf{i}} \left| \int_{\mathcal{A}_{\mathbf{i}}(\mathbf{I})} \mathbf{B}_{\mathbf{z}} \mathbf{da} \right|}{\int_{\mathcal{A}} |\mathbf{B}_{\mathbf{z}}| \mathbf{da}}$$


Fractal extrapolation

$$\begin{split} &<|\textbf{B}_{\textbf{Z}}|> \equiv \int_{\mathcal{A}}\left|\textbf{B}_{\textbf{Z}}\right| \textbf{da} / \int_{\mathcal{A}}\textbf{da} \\ &<|\textbf{B}_{\textbf{Z}}|>_{l} \equiv \frac{\sum_{i}\left|\int_{\mathcal{A}_{i}(l)}\textbf{B}_{\textbf{Z}}\textbf{da}\right|}{\int_{\mathcal{A}}\textbf{da}} = \chi(l) \cdot <\textbf{B}_{\textbf{Z}}> \\ &<|\textbf{B}_{\textbf{Z}}|> = <|\textbf{B}_{\textbf{Z}}|>_{l} \cdot \frac{\chi(l_{\eta})}{\chi(l)} = 12\textbf{G} \cdot \left(\frac{100\text{km}}{l_{\eta}}\right)^{0.26} \\ &\eta \sim 10^{8}\,\text{cm}^{2}\text{s} - 1 \text{ (Kovitya \& Cram 1983)} \\ &\text{K41} \rightarrow \textit{I}_{\eta} \approx 80\,\text{m} < 800\,\text{m} \\ &\rightarrow <|\textbf{B}_{\textbf{Z}}|> \geq 40\,\text{G} \end{split}$$

Better agreement with Hanle estimates

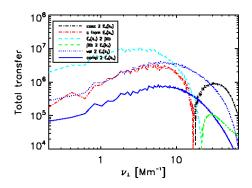
The flux remaining at $I=200\,\mathrm{km}$ follows a power-law scaling. Extrapolation to solar values, $Re_M\sim 3\cdot 10^5$, yields $\chi(200\,\mathrm{km})=0.2$. $\rightarrow <|B_Z|>\sim 50\,\mathrm{G}$

$$<|B_Z|>\sim 40~ ext{or}~50~ ext{G} \ < B_{hor}>><|B_Z|> ext{(Lites et al. 2008)} \ < B>\sim 130~ ext{G}$$
 Hanle (Trujillo Bueno

et al. 2004)

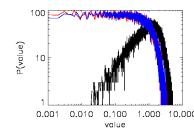
Turbulent solar surface dynamo Comparing MURAM with obs.: Strong horizontal field Prevalent weak vertical field Estimating true unsigned vertical flux

Conclusions


- A small-scale solar surface dynamo (SSSD) is likely
 - Seen in Hinode observations
 - Dynamo simulations in agreement with observations
 - Arguments against fail: stratified, compressed, little recirculation, $P_M \ll 1$ all seem OK
- Whatever its source, small-scale B-field is turbulent & fractal
 - we should use this to interpret observations

Turbulent solar surface dynamo Comparing MURAM with obs.: Strong horizontal field Prevalent weak vertical field Estimating true unsigned vertical flux

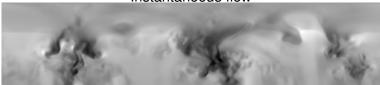
Future Work


Effect of noise

Sum of absolute values of 2 random vars

$$\bullet \ B_{app}^{L} = f(V_{tot})$$

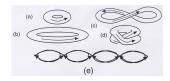
$$V_{tot} = sgn(V_{blue}) \cdot \frac{1}{I_c N} (\big| \sum_{i=1}^{N_b} \big(V(\lambda_i) + \frac{\sigma_i}{\sigma_i} \big) \Delta \lambda \big| + \frac{1}{I_c N_c} \big(V(\lambda_i) + \frac{\sigma_i}{\sigma_i} \big) \Delta \lambda \big|)$$


• For $|V_{tot}^{true}| \approx 0 \rightarrow |V_{tot}| > 0$ (artificially high flux)

Turbulent solar surface dynamo Comparing MURAM with obs.: Strong horizontal field Prevalent weak vertical field Estimating true unsigned vertical flux

Mean flow

Instantaneous flow


Time-averaged mean flow

Pictures of Dynamos

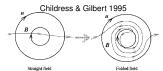
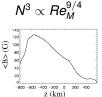
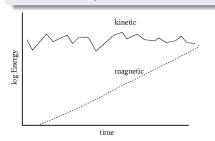
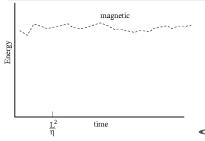



Fig. 2.—Stretching and folding of field lines by turbulent eddies.

Schekochihin et al. 2004



What is dynamo action?


1. Kinematic/exciting

Kinematic – generates
 B-field from seed
 (non-magnetic state is unstable)

2. General/sustaining

• General – maintains B-field against losses of ohmic dissipation: $\eta \nabla^2 B$

