

Energetics and Composition in the Thermosphere

A. G. Burns, W. Wang, S. C. Solomon and L. Qian

Major Species Continuity Equations (O and O₂)

Molecular diffusion

$$\frac{\partial \tilde{\Psi}}{\partial t} = -\frac{e^{Z}}{\tau} \frac{\partial}{\partial Z} \left[\frac{\overline{m}}{m_{N_{2}}} \left(\frac{T_{00}}{T_{n}} \right)^{0.25} \tilde{\alpha}^{-1} L \tilde{\Psi} \right] + S - R + e^{Z} \frac{\partial}{\partial Z} \left[K(Z) e^{-Z} \frac{\partial}{\partial Z} \left(1 + \frac{1}{\overline{m}} \frac{\partial m}{\partial Z} \right) \tilde{\Psi} \right] - \left(\vec{V} \bullet \nabla \tilde{\Psi} + w \frac{\partial \tilde{\Psi}}{\partial Z} \right)$$

Horizontal advection Vertical advection

$$\Psi_{N_2} = 1 - \Psi_O - \Psi_{O_2}$$

S is the loss of O_2 through photodissociation and the loss of O through three body recombination. Short term changes in O and O_2 are dominated by the transport processes (e.g., Rees, 1989), so only these will be discussed here.

Neutral Energy Equation

Thermospheric heating (Q) includes solar radiation heating, Joule heating, collisional heat transfer and heat release by chemical reactions. Energy loss (L) process is primarily radiation cooling (NO, $O(^{3}P)$ and CO_{2})

Minor Species Continuity Equations (NO and N(4S))

$$\begin{split} \frac{\partial \widetilde{\Psi}}{\partial t} &= -e^{Z} \frac{\partial}{\partial Z} \left[\widetilde{A} \left(\frac{\partial}{\partial Z} - \widetilde{E} \right) \widetilde{\Psi} \right] + \widetilde{S} - \widetilde{R} + \\ &e^{Z} \frac{\partial}{\partial Z} \left[e^{-Z} K_{E}(Z) \left(\frac{\partial}{\partial Z} + \frac{1}{\overline{m}} \frac{\partial \overline{m}}{\partial Z} \right) \widetilde{\Psi} \right] - \left(\vec{V} \bullet \nabla \widetilde{\Psi} + w \frac{\partial \widetilde{\Psi}}{\partial Z} \right) \end{split}$$

The NCAR-TIEGCM solves for NO, N(4S) and N(2D)

The NCAR-TIME-GCM additionally solves for H in the upper thermosphere and a multitude of species in the lower thermosphere and mesosphere (see Roble, 1995)

Boundary Conditions for Thermosphere Equations:

Upper boundary conditions:

Diffusive equilibrium for U, V, W, T, Ψ_{O2} , Ψ_{O}

 $\frac{\partial u}{\partial Z} = \frac{\partial v}{\partial Z} = \frac{\partial w}{\partial Z} = \frac{\partial T}{\partial Z} = 0$ $\left[\frac{\partial}{\partial Z} - \left(1 - \frac{m}{\overline{m}} - \frac{1}{\overline{m}}\frac{\partial \overline{m}}{\partial Z}\right)\right]\Psi = 0$

 $T_{b} = T_{b0} + T'_{b}(\theta) \exp(i\omega t + is\lambda)$ $U_{b} = U'_{b}(\theta) \exp(i\omega t + is\lambda)$ $V_{b} = V'_{b}(\theta) \exp(i\omega t + is\lambda)$

Chemical equilibrium for N(4S) and NO

Lower boundary conditions:

specified using the global scale wave model (GSWM) U and V: specified by tides
T: 181 K + perturbations introduced by tides
O₂: fixed mixing ratio of 0.22
O: gradient of the mixing ratio is zero
N(4S): chemical equilibrium
NO: constant density of 8x10⁶

The Thermosphere/ionosphere System

6

What Drives the Temperature Structure of the Thermosphere

Forcing the Thermosphere

Daily Average Power Values for Solar Cycles 21-23

Knipp et al, 2004

Changes in Major Species Neutral Composition

CENTER FOR INTEGRATED SPACE WEATHER MODELLI

Compositional Forcing (storm)

Hadv N2 UT 12

N2mmr movie for a storm

N2mmr + winds UT 1

Changes in Neutral Temperatures

Temperature Changes in the Upper Thermosphere during Geomagnetic Storms

Quiet

Thermal Storm Forcing (K/Day)

Changes in Low Latitude Thermal Forcing

Compression and Expansion

Conduction **Qdown UT 12**

Quiet

Storm

10

Temperature Evolution during the AGU Storm

Tn + winds UT 1

Compositional Disturbances During Geomagnetic Storms

Prolss (1981, 2011)

Strickland et al.

Compositional Changes Caused by Storms

Crowley

Temperature and Composition Changes with Storm Time

Burns and Killeen, 1992 20

Temperature Changes (Storm - Quiet)

Burns et al., 1995 21

What Measurements do we need to Improve our Models?

Treat the thermosphere and ionosphere as a global weather system

2.00E+03

Prolss (1981, 2011)