
TIEGCM Documentation
Release 1.95

Ben Foster

June 21, 2013

CONTENTS

1 Introduction 3

2 QuickStart Procedure 5
2.1 Downloading the model source code and required data files . 5
2.2 Making a default run on a 64-bit Linux system . 6
2.3 Running the model on IBM/AIX Platforms . 7

3 Directory Structure 11
3.1 Working Directory (workdir) . 11
3.2 Model Directory (modeldir) . 12
3.3 Data Directory (datadir) . 13

4 Run Control Parameters: The Namelist Input File 15
4.1 Example Namelist Input Files . 15
4.2 Explanation of Valid Namelist Parameters . 16

5 Structure of Output History Files 31
5.1 NetCDF Output Files (netCDF) . 31
5.2 Primary and Secondary History Files . 31

6 Saving Diagnostic Fields 33
6.1 Table of Available Diagnostics . 33
6.2 Saving Fields/Arrays from the Source Code . 34
6.3 Details of Diagnostic Field Calculations . 34

7 Model Source Code 59
7.1 The Academic License Agreement . 59
7.2 Source Code Flow Diagram . 59
7.3 Grid Structure and Resolution . 59
7.4 Modifying the Source Code . 61

8 The Make/build process: compile and link 63

9 Benchmark Test Runs of v1.95 65
9.1 Control . 65
9.2 Climatology . 65
9.3 December, 2006 “AGU” Storm Case . 66
9.4 November, 2003 Storm Case . 66
9.5 Whole Heliosphere Interval . 66

i

10 Post-Processing and Visualization 67
10.1 tgcmproc_f90 . 67
10.2 tgcmproc_idl . 67
10.3 utproc . 68

11 Contact Information 69

12 Glossary 71

13 Indices and tables 73

Index 75

ii

TIEGCM Documentation, Release 1.95

Note: This document is up to date for TIEGCM version 1.95

Contents:

CONTENTS 1

TIEGCM Documentation, Release 1.95

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The NCAR/HAO Thermosphere Ionosphere Electrodynamics General Circulation Model, or TIEGCM, is a three-
dimensional, time-dependent, numeric simulation model of the Earth’s upper atmosphere, including the upper Strato-
sphere, Mesosphere and Thermosphere.

This document is intended to assist members of the upper atmosphere research community in building, executing, and
visualizing the TIEGCM as an integral part of their research. We also welcome development efforts on the model
itself, subject to the Academic Research License Agreement tiegcmlicense.txt.

For more information about the TIEGCM and other related models, please see:

• Main TGCM website

• TIEGCM Release Documentation for version 1.95.

• TIEGCM Model Description

• tgcmgroup email list

To contact a live body at NCAR/HAO, send email to Ben Foster at foster@ucar.edu (see also Contact Information)

3

http://www.hao.ucar.edu/modeling/tgcm/
http://www.hao.ucar.edu/modeling/tgcm/tiegcm1.95/release/html
http://www.hao.ucar.edu/modeling/tgcm/tiegcm1.95/description/tiegcm_modeldes_6Oct09.pdf
http://mailman.ucar.edu/mailman/listinfo/tgcmgroup
mailto:foster@ucar.edu

TIEGCM Documentation, Release 1.95

4 Chapter 1. Introduction

CHAPTER

TWO

QUICKSTART PROCEDURE

This document is intended to provide a tutorial-like procedure for downloading source code and start-up data files,
building the model, and executing a short default run on a 64-bit Linux system.

Note: This document is up to date for version 1.95 of the TIEGCM

2.1 Downloading the model source code and required data files

The model source code and related input data files may be downloaded from the TIEGCM download page of the main
TGCM website:

http://www.hao.ucar.edu/modeling/tgcm/download.php

You will need to provide an email address (login and password are NOT required). Documentation and Postprocessor
codes are also available on the download site, but all you need for now is the source code, and corresponding data files.
Both are provided as gzipped tar files.

After downloading the two gzipped tar files to an empty working directory (workdir) on a large disk system (for
example, /mydisk/tiegcm), uncompress and extract the source code and related scripts and documentation:

$ gunzip tiegcmx.xx.tar.gz
$ tar xvf tiegcmx.xx.tar

where x.xx is the model version downloaded.

Next, make a directory to hold the data files (for example, /mydisk/tiegcm/data), and uncompress and extract
the data tar file into that directory. Then set environment variable $TGCMDATA, e.g., for the c-shell, add this line to
your .cshrc file:

setenv TGCMDATA /mydisk/tiegcm/data

At this point, you should have something like this in your working directory /mydisk/tiegcm:

total 2376
-rw-rw-r-- 1 user tgcm 4928 Jun 1 2010 README.download
-rw-r--r-- 1 user tgcm 2886 Jun 1 2010 Release_Notes
drwxrwxr-x 2 user tgcm 4096 Apr 22 08:52 data/
-rwxrwxr-x 1 user tgcm 10137 May 31 2010 tiegcm-ibm.job*
-rwxrwxr-x 1 user tgcm 10671 May 31 2010 tiegcm-linux.job*
drwxrwxr-x 5 user tgcm 4096 Jun 1 2010 tiegcmx.xx/
-rw-r--r-- 1 user tgcm 6116 May 31 2010 tiegcmlicense.txt

These files and directories contain the following:

5

http://www.hao.ucar.edu/modeling/tgcm/download.php

TIEGCM Documentation, Release 1.95

README.download
README.download Instructions for building and making a short default run.

Release_Notes
Release notes for this version of the model.

data/
Directory containing the downloaded data files (this is $TGCMDATA)

tiegcm-ibm.job
Job script for building and executing under IBM/AIX systems. (default tiegcm-ibm.job)

Read more about Running the model on IBM/AIX systems.

tiegcm-linux.job
Job script for building and executing under Linux (64-bit) systems. (default tiegcm-linux.job)

tiegcmx.xx/
Model root directory, containing source code, supporting scripts, and documentation.

You are now prepared to build the model and make a short default run using the job script.

2.2 Making a default run on a 64-bit Linux system

Take a look at the Linux job script tiegcm-linux.job. Near the top are several shell variables, with their default
settings, which configure the job script (variables and values may vary somewhat between model versions):

set modeldir = tiegcmx.xx
set execdir = tiegcm-linux
set make = Make.intel_hao64
#set make = Make.pgi_hao64
#set input = tiegcm.inp
set output = tiegcm.out
set mpi = TRUE
set nproc = 4
set modelres = 5.0
set debug = FALSE
set exec = TRUE
set utildir = $modeldir/scripts

Following are brief explanations of the job script shell variables:

Note: Absolute or relative paths are acceptable when specifying directories. Relative paths should be relative to the
working directory (workdir).

modeldir
The model root directory (modeldir from the source code download). This will contain subdirectories src/,
scripts/, doc/, etc.

tiegcm-linux
This is the execution directory (execdir), in which the model will be built and executed. It will be created if it
does not already exist. This directory will also contain the model output netCDF history files.

make
Make file containing platform-specific compiler flags, library locations, etc. If not otherwise specified with a
path, the job script will look for this file in modeldir/scripts. This file is included in the main Makefile
(scripts/Makefile). The user can either make necessary adjustments to an existing make file, or write
their own for a different platform/compiler system.

6 Chapter 2. QuickStart Procedure

TIEGCM Documentation, Release 1.95

Here is an example make file for 64-bit HAO Linux systems using the ifort Intel compiler:
Make.intel_hao64

input
The namelist input file. When this is commented (as above), the job script will make a default namelist file
tiegcm_default.inp, and use it for the default run. Later, you can edit this file for your own runs, rename
it, and reset and uncomment the input shell variable in the job script.

output
Name of the file to receive stdout output from the model. If this pre-exists, it will be overwritten when the model
is executed.

Here is an example stdout file from a single-processor default run: tiegcm_default.out

mpi
Logical flag indicating whether or not to link the MPI library for a multi-processor parallel run. If FALSE, the
MPI library is not linked, and it is assumed the model will be run in serial (single-processor) mode.

nproc
Number of processors to use in a parallel execution. This is ignored if mpi is FALSE.

modelres

Model resolution. Two resolutions are supported:

• modelres = 5.0 sets 5-degree lat x lon horizontal, and dz=0.50 vertical

• modelres = 2.5 sets 2.5-degree lat x lon horizontal, and dz=0.25 vertical

If the resolution is changed, the model should be recompiled before re-executing the job script (type “gmake
clean” in the execdir).

For more information, see Grid Structure and Resolution.

debug
If debug = TRUE, the job script will compile the build with debug flags set. Debug flags specific to the
compiler are set in the make file. If debug is changed, the code should be recompiled (type “gmake clean” in
the execdir before re-executing the job script).

exec
If exec = TRUE, the job script will execute the model after compilation, otherwise, the job script will stop after
compilation without execution.

utildir
The utility directory containing supporting scripts. This is normally the scripts/ subdirectory in the model
root directory modeldir.

You are now ready to build and execute a default run. To do this, simply execute the job script as follows:

$ tiegcm-linux.job &

The compilation output will be displayed. If the build is successful (and exec=TRUE), the model will be executed,
and stdout will go to the specified output file. If the job is successful, you can edit and rename the namelist input
file, reset input in the job script, and re-execute the job script. If there has been no change to the source code, it will
not need to recompile, and will use the pre-existing executable.

2.3 Running the model on IBM/AIX Platforms

2.3. Running the model on IBM/AIX Platforms 7

TIEGCM Documentation, Release 1.95

Note: This section contains some information that is specific to user’s of the NCAR IBM system "bluefire".
User’s of other IBM systems may need to make adjustments for their particular environment. For more information
about the NCAR bluefire system, see http://www2.cisl.ucar.edu/docs/bluefire-user-guide

The model can be built and executed on IBM platforms running AIX with the xlf90 (mpxlf_r) compiler. You can use
the same procedure described in the previous section, except that you use the IBM job script tiegcm-ibm.job
instead of the Linux job script tiegcm-linux.job.

The IBM job script has the same user-settable shell variables as the Linux job script, but the default settings are slightly
different:

set modeldir = tiegcm_trunk
set execdir = tiegcm_trunk-aix
#set input = tiegcm.inp
set output = tiegcm.out
set make = Make.bluefire
set mpi = TRUE
set modelres = 5.0
set debug = FALSE
set exec = TRUE
set utildir = $modeldir/scripts

Note the execdir name, and the make file Make.bluefire

Also note the special “#BSUB” directives at the top of the IBM job script (descriptions in the right-hand column are
for this document only, and are not in the script itself):

#BSUB -J tiegcm_trunk # Job name
#BSUB -P 24100004 # NCAR project number
##BSUB -q regular # regular queue (commented here)
##BSUB -n 32 # number of processors (commented here)
#BSUB -q debug # debug queue
#BSUB -n 8 # number of processors (MPI tasks)
#BSUB -o tiegcm_trunk.%J.out # stdout file
#BSUB -e tiegcm_trunk.%J.out # stderr file
#BSUB -N
#BSUB -u $LOGNAME@ucar.edu # email notification address
#BSUB -W 1:00 # wallclock limit (6-hr max at NCAR)

These are resource settings for the Load Sharing Facility (LSF), the batch queuing system sold by Platform Computing.
The LSF is used for scheduling jobs on the bluefire IBM system at NCAR. This job will be submitted to the
debug queue, requesting 8 processors, with a wallclock limit of 1 hour. Note the double pound-sign “##” indicates a
commented field.

To submit the IBM job script to the LSF batch system, type:

$ bsub < tiegcm-ibm.job

Watch the progress of your LSF job with the command:

$ bjobs

You can kill a LSF job with this command:

$ bkill job_ID

Where job_ID is the job identifier given in the bjobs command.

For more information about the LSF, see the Wikipedia site:

http://en.wikipedia.org/wiki/Platform_LSF

8 Chapter 2. QuickStart Procedure

http://www2.cisl.ucar.edu/docs/bluefire-user-guide
http://en.wikipedia.org/wiki/Platform_LSF

TIEGCM Documentation, Release 1.95

or the Platform Computing site:

http://www.platform.com/workload-management/high-performance-computing/lp

2.3. Running the model on IBM/AIX Platforms 9

http://www.platform.com/workload-management/high-performance-computing/lp

TIEGCM Documentation, Release 1.95

10 Chapter 2. QuickStart Procedure

CHAPTER

THREE

DIRECTORY STRUCTURE

This section describes a typical directory structure the user will be working with when running the TIEGCM model.
The working directory (workdir) is the “root” directory of the user’s project.

The model directory (modeldir) is typically a subdirectory under the working directory, and contains the model source
code, supporting scripts, documentation, and scripts for running tests.

The data directory (datadir) may also be a subdirectory under the working directory, or it may be on a large temporary
disk that is accessible from the working directory. The data directory contains start-up and input data files for running
the model.

3.1 Working Directory (workdir)

The user’s working directory will typically look something like this (the datadir can be on a large separate disk
system):

workdir
|

| | | |

*.inp execdir/ modeldir/ datadir/

*.job |

*.out *.o

*.mod

*.nc
Make*
exec

Here, *.inp are namelist input files, *.job are job script s, and *.out are are stdout files from model runs.
The execdir is the build/execution directory (created by the first build), with object code (*.o, *.mod), model
output history files (*.nc), make files (Make*), and an executable file (exec). Various other files may also be in
the execdir. The modeldir and datadir directories are described below.

The job script in your working directory contains a shell variable specifying the modeldir, so it knows where to find the
source code and supporting scripts for the build process. The namelist input file also refers to the datadir for start-up
and other data input files (e.g., SOURCE, GPI_NCFILE, IMF_NCFILE, etc). These namelist parameters can use the
environment variable TGCMDATA to specify the datadir (see section on namelist input files).

11

TIEGCM Documentation, Release 1.95

3.2 Model Directory (modeldir)

The model root directory is what you get when you download the model source code tar file. The model directory
contains subdirectories with the model source code, supporting scripts, documentation, and test scripts:

modeldir
|

--
| | | |
src/ scripts/ doc/ tests/
| | | |

Make.* userguide/ control/

*.F linux.job description/ climatology/

*.h ibm.job release/ dec2006
default.inp diags.table nov2003/
tgcm_contents README.download whi2008/
tgcm_ncdump

etc

src/ directory contents:

• Fortran source code *.F, *.h. The source code is f90 compliant, and most source files are in fixed-format
fortran. There is a single header file, defs.h, which contains grid definitions and dimensions.

scripts/ directory contents:

• Make.*: Makefiles containing platform-dependent compiler flags, Make variables, and library locations. For
example, Make.intel_hao64. These file can be copied, renamed, and customized for the user’s plat-
form/machine environment.

• tiegcm-linux.job: Default model build/execute script for Linux systems.

• tiegcm-ibm.job: Default model build/execute script for IBM/AIX systems.

• tiegcm_default.inp: Default namelist input file.

• tgcm_contents: Utility script to print “contents” of netCDF output history files.

• tgcm_ncdump: Utility script to print an “ncdump” of history files, including data for scalars and 1-d vectors.

doc/ directory contents:

• userguide/: Directory containing source files for the User’s Guide (this document)

• description/: Directory containing source files for the TIEGCM Model Description

• release/: Directory containing source files for the Release Documentation

• diags.table: Table of diagnostic fields that can be saved on secondary history files.

• README.download: Instructions for how to make a quick-start default build and execution of the model
after downloading the source code and data.

tests/ directory contents:

• README.tests: Summary of benchmark test runs made with the current version of the model

• Several directories (climatology, control, dec2006, nov2003, etc) containing namelist input files and job scripts
that can be used to reproduce the benchmark runs for validation and testing, comparing results from code
changes, etc.

• For more information on benchmark runs made for the current release, please see Release Documentation

12 Chapter 3. Directory Structure

http://www.hao.ucar.edu/modeling/tgcm/tiegcm1.95/description/tiegcm_modeldes_6Oct09.pdf
http://www.hao.ucar.edu/modeling/tgcm/tiegcm1.95/release/html
http://www.hao.ucar.edu/modeling/tgcm/tiegcm1.95/release/html

TIEGCM Documentation, Release 1.95

3.3 Data Directory (datadir)

The public TIEGCM data directory is what you get when you download the data tar file. This directory is typically
referred to with the environment variable TGCMDATA. Subsequently, after the data download, you may obtain ad-
ditional needed data files from the NCAR Community Data Portal. Here is a partial schematic of the datadir (where
“tiegcmx.xx” is the desired model version):

datadir
|

| |

gpi*.nc tiegcmx.xx/
gswm*.nc |
imf *.nc TGCM.tiegcmx.xx.p*.nc
etc pcntr*smin*.nc

pcntr*smax*.nc
etc

Files listed on the left side refer to data input files that may be needed when running the model in different modes.
These are netCDF files, specifically prepared for import into the TIEGCM model (they are not model start-up
SOURCE files). These files are version-independent (can be used by (almost) any version of the model). They
are usually provided to the model as namelist input parameters:

• gpi*.nc GeoPhysical Indices data files (3-hourly Kp and F10.7 cm solar flux). Namelist Input parameter:
GPI_NCFILE

• gswm*.nc Global Scale Wave Model data files, used to specify tidal perturbations for the lower boundary of
the TIEGCM. There are 4 separate files for diurnal, semi-diurnal, migrating and non-migrating tides. For the
namelist input parameters, please see GSWM.

• imf*.nc Interplanetary Magnetic Field OMNI data files. Namelist read parameter is IMF_NCFILE. These files
contain data for the BX,BY,BZ components of the IMF, solar wind velocity and solar wind density.

The “tiegcmx.xx/” subdirectory refers to the version of the model that was downloaded. This subdirectory contains
start-up SOURCE files from benchmark runs executed by that version of the model (see Section on Benchmark Test
Runs). These files can be used to remake the benchmark runs for testing and validation. Here is an example of start-up
files provided for benchmark runs made by TIEGCM version 1.95:

TGCM.tiegcm1.94.p_dec2006_heelis_gpi_001.nc
TGCM.tiegcm1.94.p_dec2006_weimer_imf_001.nc
TGCM.tiegcm1.94.p_nov2003_heelis_gpi_001.nc
TGCM.tiegcm1.94.p_nov2003_weimer_imf_001.nc
TGCM.tiegcm1.94.p_whi2008_heelis_gpi_001.nc
TGCM.tiegcm1.94.p_whi2008_weimer_imf_001.nc
TGCM.tiegcm1.94.pclim_heelis_001.nc
pcntr_decsol_smax.nc
pcntr_decsol_smin.nc
pcntr_junsol_smax.nc
pcntr_junsol_smin.nc
pcntr_mareqx_smax.nc
pcntr_mareqx_smin.nc
pcntr_sepeqx_smax.nc
pcntr_sepeqx_smin.nc

3.3. Data Directory (datadir) 13

http://www.hao.ucar.edu/modeling/gswm/gswm.html

TIEGCM Documentation, Release 1.95

14 Chapter 3. Directory Structure

CHAPTER

FOUR

RUN CONTROL PARAMETERS: THE
NAMELIST INPUT FILE

The namelist input file specifies user-provided run control parameters for a model run. These parameters include the
model startup file, start and stop times, solar inputs, lower boundary files, and several other flags and data files as
necessary. This document describes each valid namelist parameter, their valid combinations, and provides several
example input files for running the model in different modes and resolutions.

4.1 Example Namelist Input Files

Please refer to the following examples of namelist input files:

Note: Any part of a line in the namelist file following a semi-colon will be treated as a comment (see example files).

Example Namelist Input Files:

• The default input file: default.inp

• A continuation of the default run: continuation.inp

• Saving diagnostics on secondary history files: diags.inp

• Full year climatology with constant forcing: climatology.inp

• Seasonal control runs with constant forcing: mareqx.inp

• Heelis potential model with constant solar forcing: heelis_smax.inp

• Heelis potential model with GPI (Kp) data file: heelis_gpi.inp

• Weimer potential model with constant IMF forcing: weimer_con.inp

• Weimer potential model with IMF data file: weimer_imf.inp

• Weimer potential model with IMF+GPI data files: weimer_imf+gpi.inp

• Default double-resolution run:

• Example “storm runs”:

– December, 2006 “AGU” storm run: dec2006.inp

15

TIEGCM Documentation, Release 1.95

4.2 Explanation of Valid Namelist Parameters

Following is a table of valid TIEGCM 1.95 namelist parameters, and their descriptions. Follow the parameter name
links to explanations below.

Parameter Name Data Type and Default Description
AURORA integer: 1 0/1 flag for auroral parameterization
BXIMF or BXIMF_TIME real or real array X-component of the IMF
BYIMF or BYIMF_TIME real or real array Y-component of the IMF
BZIMF or BZIMF_TIME real or real array Z-component of the IMF
CALENDAR_ADVANCE real: 1 0/1 switch to advance calendar time
COLFAC real: 1.5 O-O+ collision factor
CTPOTEN real: Cross-Tail Potential
CTPOTEN_TIME real: [none] Time-dependent Cross-Tail Potential
F107 or F107_TIME real or real array Daily F10.7 cm solar flux
F107A or F107A_TIME real or real array 81-day average F10.7 cm solar flux
GPI_NCFILE string: [none] Geophysical Indices (Kp) data file
GSWM data files string: [none] GSWM Model tidal lbc data files
HIST integer(3) Primary history write frequency
IMF_NCFILE string: [none] IMF OMNI data files
KP or KP_TIME real or real array Kp for calc of hpower and ctpoten
LABEL string: Arbitrary string identifying the run
MXHIST_PRIM integer: 10 Max histories on primary file
MXHIST_SECH integer: 24 Max histories on secondary file
OUTPUT string array Primary history output file(s)
POTENTIAL_MODEL string: [HEELIS] High-latitude Potential Model
POWER or POWER_TIME real or real array Hemispheric Power (GW)
SECSTART integer(3) Secondary history start time (day,hour,minute)
SECSTOP integer(3) Secondary history stop time (day,hour,minute)
SECHIST integer(3) Secondary history write frequency (day,hour,minute)
SECFLDS string array Fields to be stored on secondary histories
SECOUT string array Secondary history output file(s)
SOURCE string: [none] Primary SOURCE (start-up) file
SOURCE_START integer(3) Model time to start on SOURCE file
START integer(3) Model start time (day,hour,minute)
START_YEAR integer: 2002 Starting year
START_DAY integer: 80 Starting day of year
STEP integer: [none] Model time step (seconds)
STOP integer(3) Model stop time (day,hour,minute)
SWDEN or SWDEN_TIME real or real array Solar Wind Density
SWVEL or SWVEL_TIME real or real array Solar Wind Velocity
TIDE real(10) Amplitudes and phases of semi-diurnal tide (rarely used)
TIDE2 real(2) Amplitudes and phases of diurnal tide (rarely used)

AURORA
If AURORA > 0 then the auroral parameterization (aurora.F) is called by dynamics (dynamics.F), otherwise it
is not called.

Data type: scalar integer
Default: 1

16 Chapter 4. Run Control Parameters: The Namelist Input File

TIEGCM Documentation, Release 1.95

Back to top

BXIMF or BXIMF_TIME
X-component of the IMF. Can be specified as either a constant (BXIMF), or series of time-dependent values
(BXIMF_TIME). If IMF_NCFILE is set and BXIMF is not provided, then BXIMF will be taken from the IMF
data file.

Data type: real or real array

Examples:

• BXIMF = 0. ; constant for entire run

• BXIMF_TIME = 80,0,0,40., 80,1,0,30., 80,5,0,20. ; time series

See also:

• BYIMF or BYIMF_TIME

• BZIMF or BZIMF_TIME

• IMF_NCFILE

Back to top

BYIMF or BYIMF_TIME
Y-component of the IMF. Can be specified as either a constant (BYIMF), or series of time-dependent values
(BYIMF_TIME). If IMF_NCFILE is set and BYIMF is not provided, then BYIMF will be taken from the IMF
data file.

Data type: real or real array

Examples:

• BYIMF = 0. ; constant for entire run

• BYIMF_TIME = 80,0,0,40., 80,1,0,30., 80,5,0,20. ; time series

See also:

• BXIMF or BYIMF_TIME

• BZIMF or BZIMF_TIME

• IMF_NCFILE

Back to top

BZIMF or BZIMF_TIME
Z-component of the IMF. Can be specified as either a constant (BZIMF), or series of time-dependent values
(BZIMF_TIME). If IMF_NCFILE is set and BZIMF is not provided, then BZIMF will be taken from the IMF
data file.

Data type: real or real array

Examples:

• BZIMF = 0. ; constant for entire run

• BZIMF_TIME = 80,0,0,40., 80,1,0,30., 80,5,0,20. ; time series

See also:

• BXIMF or BXIMF_TIME

• BYIMF or BYIMF_TIME

• IMF_NCFILE

4.2. Explanation of Valid Namelist Parameters 17

TIEGCM Documentation, Release 1.95

Back to top

CALENDAR_ADVANCE
Set CALENDAR_ADVANCE=1 to advance calendar time from START_DAY, otherwise calendar time is not
advanced. If advancing calendar time, iday (init_module) is incremented every 24 hours, and the sun’s decli-
nation and longitude is recalculated (see sub advance_day in advance.F and sub sunloc in magfield.F), thereby
allowing seasonal change to take place. The earth’s orbital eccentricity “sfeps” is also updated as a 6% variation
in solar output over a year.

A run with CALENDAR_ADVANCE=0 is referred to as a “steady-state” run. This is often used to advance the
model to a “steady-state” for a given date, prior to a seasonal run with CALENDAR_ADVANCE=1.

Back to top

COLFAC
O-O+ Collision Frequency, alias the “Burnside Factor”. Default is 1.5, but there have been recommendations
for 1.3. COLFAC is used in lamdas.F and oplus.F.

Data type: real
Default: 1.5

Back to top

CTPOTEN or CTPOTEN_TIME
Cross-tail (or cross-cap) potential. This is used in the auroral precipitation parameterization. It can be provided
either as a single constant (CTPOTEN), or several time-dependent values (CTPOTEN_TIME). If GPI_NCFILE
is set and CTPOTEN is not provided, it will be calculated from 3-hourly Kp data read from GPI_NCFILE.

The time-dependent example below specifies increasing CTPOTEN from model times 80,0,0 to 80,1,0, and
80,5,0. Interpolated values will be used between these specified model times.

Note that if POTENTIAL_MODEL=’WEIMER’ or ‘WEIMER05’, then the user is not allowed to provide CT-
POTEN because it will be calculated from the Weimer electric potential.

Data type: real or real array

Examples:

• CTPOTEN = 60.

• CTPOTEN_TIME = 80,0,0,60., 80,1,0,65., 80,5,0,100.

See also:

• POWER or POWER_TIME

• KP or KP_TIME

• GPI_NCFILE

Back to top

F107 or F107_TIME
Daily F10.7 cm solar flux. This can be provided either as a single constant (F107), or several time-dependent
values (F107_TIME). If GPI_NCFILE is set and F107 is not set, then F107 will be set from the data. The below
example of F107_TIME increases the f10.7 flux from 120 to 150 in the first hour of model time, then to 200 by
the fifth hour. Values are linearly interpolated at each time-step.

18 Chapter 4. Run Control Parameters: The Namelist Input File

TIEGCM Documentation, Release 1.95

Data type: real or real array

Examples:

• F107 = 120.

• F107_TIME = 80,0,0,120., 80,1,0,150., 80,5,0,200.

See also:

• F107A

• POTENTIAL_MODEL

• GPI_NCFILE

• IMF_NCFILE

Back to top

F107A or F107A_TIME
81-day average F10.7 cm solar flux. This can be provided either as a single constant (F107A), or several time-
dependent values (F107A_TIME). If GPI_NCFILE is set and F107A is not set, then F107A will be set from the
data. The below example of F107A_TIME increases the f10.7a flux from 120 to 130 in 12 hours of model time.

Data type: real or real array

Examples:

• F107A = 120.

• F107A_TIME = 80,0,0,120., 80,6,0,125., 80,12,0,130.

See also:

• F107

• POTENTIAL_MODEL

• GPI_NCFILE

• IMF_NCFILE

Back to top

GPI_NCFILE
Specifies a netCDF data file containing 3-hourly Kp and daily F10.7 data to drive high-latitude convection and
the auroral precipitation oval. If GPI_NCFILE is specified, and POTENTIAL_MODEL=’HEELIS’, then at least
one of CTPOTEN,POWER,F107,F107A must not be specified. If CTPOTEN or POWER are not specified, they
are calculated from the Kp data using empirical relationships (see source file gpi.F). If F107 or F107A are not
specified, the data will be used.

If GPI_NCFILE is specified when POTENTIAL_MODEL=’WEIMER’ and IMF_NCFILE is specified, then the
Weimer model and aurora will be driven by the IMF data, and only F107 and F107A will be read from the GPI
data file (F107 is not available on IMF data files).

If the current model time is not available on the GPI data file, the model will print an error message to stdout,
and stop.

Data Source: Ascii data is obtained from NOAA/NGDC, and an equivalent netCDF data file is written for import
to the TGCM models (see code in hao:$TGCMROOT/mkgpi).

Datatype: string

Example:

• GPI_NCFILE = ‘$TGCMDATA/gpi_2000001-2009031.nc’

4.2. Explanation of Valid Namelist Parameters 19

TIEGCM Documentation, Release 1.95

See also:

• CTPOTEN or CTPOTEN_TIME

• POWER or POWER_TIME

• F107 or F107_TIME

• IMF_NCFILE

Back to top

GSWM model data files for lbc
Paths to netCDF data files containing tidal perturbations from the Global Scale Wave Model. If provided, the
files will be read and the perturbations will be added to the lower boundary conditions of T,U,V, and Z. If
provided, then TIDE and TIDE2 must be zeroed out.

Warning: As of version 1.95, the model is not tuned to use the non-migrating GSWM tidal components. The
default namelist input file specifies migrating diurnal and semi-diurnal tides, but not the non-migrating compo-
nents. In later releases, non-migrating tides may be supported at the 2.5-deg resolution.

GSWM files must contain data compatable with the lower boundary of the model (99 km), and the horizontal
resolution of the model being run (either 5 or 2.5 degrees). See examples below.

Datatype: string

Examples:

• GSWM files for the 5-degree TIEGCM:

GSWM_MI_DI_NCFILE = ’$TGCMDATA/gswm_diurn_5.0d_99km.nc’
GSWM_MI_SDI_NCFILE = ’$TGCMDATA/gswm_semi_5.0d_99km.nc’
GSWM_NMI_DI_NCFILE = ’$TGCMDATA/gswm_nonmig_diurn_5.0d_99km.nc’
GSWM_NMI_SDI_NCFILE = ’$TGCMDATA/gswm_nonmig_semi_5.0d_99km.nc’

• GSWM files for 2.5-degree TIEGCM:

GSWM_MI_DI_NCFILE = ’$TGCMDATA/gswm_diurn_2.5d_99km.nc’
GSWM_MI_SDI_NCFILE = ’$TGCMDATA/gswm_semi_2.5d_99km.nc’
GSWM_NMI_DI_NCFILE = ’$TGCMDATA/gswm_nonmig_diurn_2.5d_99km.nc’
GSWM_NMI_SDI_NCFILE = ’$TGCMDATA/gswm_nonmig_semi_2.5d_99km.nc’

See also:

• TIDE

• TIDE2

Back to top

HIST
Primary history write frequency, specified as a model time (day,hour,minute). HIST time must divide evenly
into STOP minus START times.

Examples:

• HIST = 1,0,0 ;request daily histories

• HIST = 0,1,0 ;request hourly histories

• HIST = 0,0,12 ;request 12-minute histories

See also:

• SECHIST

20 Chapter 4. Run Control Parameters: The Namelist Input File

TIEGCM Documentation, Release 1.95

Back to top

POWER or POWER_TIME
Hemispheric Power (GW). This is used in the auroral precipitation parameterization. It can be provided either
as a single constant (POWER), or several time-dependent values (POWER_TIME). If GPI_NCFILE is set and
POWER is not provided, it will be calculated from 3-hourly Kp data read from GPI_NCFILE.

The time-dependent example below specifies increasing POWER from model times 80,0,0 to 80,1,0, and 80,5,0.
Interpolated values will be used between these specified model times.

Data type: real or real array

Examples:

• POWER = 16.

• POWER_TIME = 80,0,0,16., 80,1,0,20., 80,5,0,70.

See also:

• CTPOTEN or CTPOTEN_TIME

• KP or KP_TIME

• GPI_NCFILE

Back to top

KP or KP_TIME
Geomagnetic Activity index. If KP is specified and POWER and/or CTPOTEN are commented, then the given
KP will be used with empirical formulas to calculate POWER and/or CTPOTEN, which are used in the Auroral
parameterization.

KP can be provided as a scalar constant (KP), or as a series of time-dependent values (KP_TIME), as in the
below examples. KP cannot be set if GPI_NCFILE data file is specified.

Empirical formula used to calculate POWER from KP (see function hp_from_kp in util.F):

if (kp <=7.) hp_from_kp = 16.82*exp(0.32*kp)-4.86
if (kp > 7.) hp_from_kp = 153.13 + (kp-7.)/(9.-7.)*(300.-153.13)

Empirical formula used to calculate CTPOTEN from KP (see function ctpoten_from_kp in util.F):

ctpoten_from_kp = 15.+15.*kp + 0.8*kp**2

Examples:

• KP = 4.0

• KP_TIME = 80,0,0,4., 80,6,0,4.5, 80,12,0,5.0

See also:

• CTPOTEN

• POWER

• GPI_NCFILE

Back to top

IMF_NCFILE
Specifies a netCDF data file containing hourly IMF parameters BX,BY,BZ,SWVEL, and SWDEN. This can be
set only when POTENTIAL_MODEL=’WEIMER’. The data will be used to drive the Weimer 2005 potential
model. When set, the user must not provide at least one of the above IMF parameters. Data will be used for

4.2. Explanation of Valid Namelist Parameters 21

TIEGCM Documentation, Release 1.95

IMF parameters not provided by the user. Values (scalar or time-dependent) that are provided by the user will
take precedence over the data file.

If the current model time is not available on the IMF data file, the model will print an error message to stdout
and stop.

Notes on creation of IMF OMNI data files:

•IMF data is derived from 1-minute OMNI satellite data available on CDAweb CDAweb. Our derivation is
a multi-step process:

•Data gaps in the raw 1-minute OMNI data are linearly interpolated. If a gap happens to occur at the
beginning or end of the time interval, it is set to the next known good data point.

•Gap-filled data is used to compute a 15 minute trailing average lagged by 5 minutes.

•Time averaged data is sampled at 5 minutes

•A data quality flag is calculated for every 5-minute sample point. The data quality flag is a boolean value
set to “1” for all sample points derived from valid (not gap-filled) data. The data quality flag is set to “0”
for any sample point that is derived from gap-filled data anywhere in the 15 minute trailing average lagged
by 5 minutes.

•The data quality flag is stored in the NetCDF-formatted IMF input file. For any variable (ie. “swvel” - solar
wind velocity), there exists a mask (ie. “velMask”). Find a complete list of IMF variables with command
“ncdump -h [imf-file.nc]”.

•Note: You should verify the IMF data quality before doing storm simulations. Known periods of invalid
IMF data include approximately days 301 to 304 of 2003 (during the “Halloween Storm”).

Example:

• IMF_NCFILE = ‘$TGCMDATA/imf_OMNI_2002001-2002365.nc’

Back to top

LABEL
LABEL may be any string up to 80 characters long, used to identify a run. The LABEL is written to output
history files as a global file attribute. This parameter is purely a user convenience, and does not effect the model
run in any way.

Data type: string
Default: ‘tiegcm res=5’

Back to top

MXHIST_PRIM
Maximum number of histories to be written to primary OUTPUT files. When this many histories have been
written to the current OUTPUT file, the next OUTPUT file is created and it receives subsequent histories. This
parameter can be adjusted to control the size of primary OUTPUT files.

Data type: integer
Default: 10

Examples:

• MXHIST_PRIM = 15 ; allow maximum of 15 histories per primary output file

22 Chapter 4. Run Control Parameters: The Namelist Input File

http://cdaweb.gsfc.nasa.gov/istp_public/

TIEGCM Documentation, Release 1.95

See also:

• OUTPUT

Back to top

MXHIST_SECH
Maximum number of histories to be written to secondary output files (SECOUT). When this many histories have
been written to the current SECOUT file, the next SECOUT file is created and it receives subsequent histories.
This parameter can be adjusted to control the size of secondary OUTPUT files.

Data type: integer
Default: 24

Examples:

• MXHIST_SECH = 24 ; allow 1 day of hourly histories per file

• MXHIST_SECH = 48 ; allow 2 days of hourly histories per file

See also:

• SECOUT

Back to top

OUTPUT
List of primary history output files. Each file may be an absolute path, or relative to the execution directory. If
an initial run (SOURCE is specified), then pre-existing OUTPUT files will be overwritten. If a continuation run
(SOURCE is not specified), then the first OUTPUT file should contain the source history at START time. In this
case, subsequent output histories will be appended to the first OUTPUT file until it is full. As each OUTPUT
file is filled (see MXHIST_PRIM), the next OUTPUT file is created and histories are written until it is full, and
so on.

OUTPUT files are usually specified with increasing integers imbedded in the names. See examples below. As
a convenience, large sequences of files may be specified in a “short-form”, see example 3 below specifying 20
files. By convention, primary history output files may use the letter “p” to indicate primary file series (see all 3
examples below, and contrast with SECOUT).

Examples:

OUTPUT = ’p_myoutput_001.nc’
OUTPUT = ’myoutput.p001.nc’,’myoutput.p002.nc’,’myoutput.p003.nc’
OUTPUT = ’myoutput_p001.nc’,’to’,’myoutput_p020.nc’,’by’,’1’

See also:

• SECOUT

• SOURCE

• MXHIST_PRIM

Back to top

POTENTIAL_MODEL
The high-latitude potential model used to calculate electric potential above a specified latitude. This string can
have one of two values:

4.2. Explanation of Valid Namelist Parameters 23

TIEGCM Documentation, Release 1.95

POTENTIAL_MODEL = ‘HEELIS’
POTENTIAL_MODEL = ‘WEIMER’

‘HEELIS’ is the Rod Heelis model (heelis.F). ‘WEIMER’ is the Dan Weimer 2005 model (wei05sc.F).

Note: The Weimer model of high-latitude potential is the intellectual property of Daniel Weimer and may
not be extracted, distributed, or used for any purpose other than as implemented in the TIE-GCM. For further
information concerning this model, please contact Dan Weimer (dweimer@vt.edu).

For a brief discussion of the use of the Weimer 2005 model in TIEGCM, please see Notes on Weimer05 in
TIEGCM.

Data type: string
Default: ‘HEELIS’

Back to top

SECFLDS
List of fields to be saved to secondary histories. These may be either fields that are also saved on primary
histories (so-called “prognostic” fields), fields that have been requested via addfld calls in the source code, or
fields available via the diagnostics module (see example below).

Note the final size of secondary output files is affected by the number of fields specified as well as the number
of histories on the file. The file size can be controlled by setting the number of histories allowed on a secondary
file MXHIST_SECH.

Data type: one or more character strings

Examples:

;
; Example for tiegcm1.9: all fields are "prognostic" except EEX,EEY,EEZ,
; which are saved by addfld calls in sub ionvel (ionvel.F).
;
SECFLDS = ’TN’,’UN’,’VN’,’O1’,’NO’,’N4S’,’NE’,’TE’,’TI’,

’O2’,’O2P’,’OMEGA’,’POTEN’,’EEX’,’EEY’,’EEZ’
;
; This example lists all diagnostic fields available via the diags module
; (it is not necessary to call addfld in the code to obtain these fields)
;
SECFLDS = ’CO2_COOL’,’NO_COOL’,’DEN’,’HEATING’,’QJOULE’,

’SIGMA_PED’,’SIGMA_HAL’,’TEC’,’UI_ExB’,’VI_ExB’,’WI_ExB’,
’LAMDA_PED’,’LAMDA_HAL’,’HMF2’,’NMF2’,’SCHT’,’MU_M’

See also: MXHIST_SECH

Back to top

SECSTART
Secondary history start time, specified as a model time (day,hour,minute).

Data type: 3 integers (day,hour,minute)
Valid range: 0-365 for day, 0-23 for hour, 0-59 for minute.

24 Chapter 4. Run Control Parameters: The Namelist Input File

mailto:dweimer@vt.edu

TIEGCM Documentation, Release 1.95

SECSTART time must follow these rules:

• It must be a multiple of timestep STEP and less than SECSTOP time.

• It must be greater than or equal to START time, and less than or equal to STOP time.

• In the case of an initial run (SOURCE history provided), SECSTART must not be equal to START
time. This is to avoid zero valued secondary history fields.

Examples:

• SECSTART = 80,1,0 ; Start saving secondary histories at model time 80,1,0

See also:

• SECSTOP

• SECHIST

Back to top

SECSTOP
Secondary history stop time, specified as a model time (day,hour,minute).

Data type: 3 integers (day,hour,minute)
Valid range: 0-365 for day, 0-23 for hour, 0-59 for minute.

SECSTOP time must follow these rules:

• It must be a multiple of timestep STEP and greater than SECSTART time.

• It must be greater than or equal to START time, and less than or equal to STOP time.

Examples:

• SECSTOP = 81,0,0 ; Start saving secondary histories at model time 80,1,0

See also:

• SECSTART

• SECHIST

Back to top

SECHIST
Secondary history write frequency, specified as a model time (day,hour,minute). SECHIST time must divide
evenly into SECSTOP minus SECSTART times.

Data type: 3 integers (day,hour,minute)
Valid range: 0-365 for day, 0-23 for hour, 0-59 for minute.

Examples:

• SECHIST = 0,1,0 ;request hourly histories

• SECHIST = 0,0,12 ;request 12-minute histories

See also:

• HIST

4.2. Explanation of Valid Namelist Parameters 25

TIEGCM Documentation, Release 1.95

Back to top

SECOUT
List of secondary history output files. Secondary histories store diagnostic fields, usually at a higher temporal
resolution than primary files. Each file may be an absolute path, or relative to the execution directory. Beware
that SECOUT will overwrite any pre-existing files with the same names. As each SECOUT file is filled (see
MXHIST_SECH), the next SECOUT file is created and histories are written until it is full, and so on.

SECOUT files are usually specified with increasing integers imbedded in the names. See examples below. As
a convenience, large sequences of files may be specified in a “short-form”, see example 3 below specifying 20
files. By convention, secondary history output files may use the letter “s” to indicate secondary file series (see
all 3 examples below).

Examples:

SECOUT = ’s_myoutput_001.nc’
SECOUT = ’myoutput.s001.nc’,’myoutput.s002.nc’,’myoutput.s003.nc’
SECOUT = ’myoutput_s001.nc’,’to’,’myoutput_s020.nc’,’by’,’1’

See also:

• OUTPUT

• SOURCE

• MXHIST_SECH

Back to top

SOURCE
SOURCE is the start-up history file for an initial run. SOURCE may be a full path or relative to the execution
directory. It must be a TIEGCM history with the same grid resolution as the model being run. It does not need
to be from the same model version as that being run.

If SOURCE is specified, then SOURCE_START, the model time of the history to read on the SOURCE file,
must also be specified. The code will search the SOURCE file for the SOURCE_START history. If SOURCE
is not specified, then the run is a continuation run, and the source history is provided in the first OUTPUT file at
START time.

The SOURCE file must be on the local disk. The model will not look for the SOURCE history on any archive
file system.

Examples:

• SOURCE = ‘$TGCMDATA/TGCM.tiegcm1.95.pcntr_eqnx_smed.nc’

See also:

• SOURCE_START

Back to top

SOURCE_START
This is the model time of the history to read from the SOURCE file. Model time is specified as a 3-integer
triplet: day,hour,minute. If SOURCE is specified, then SOURCE_START must also be specified. If the
SOURCE_START history is not found on the SOURCE file, the model will stop and print an appropriate error
message to stdout.

Data type: 3 integers
Valid range: 0-365 for day, 0-23 for hour, 0-59 for minute.

26 Chapter 4. Run Control Parameters: The Namelist Input File

TIEGCM Documentation, Release 1.95

Example:

• SOURCE_START = 80,0,0

See also:

• SOURCE

Back to top

START
Model time for start of the run. Model time is a 3-integer triplet: day,hour, minute. If CALEN-
DAR_ADVANCE=0, then START day can be any number between 0 and 365. If CALENDAR_ADVANCE=1,
then START day must be the same as START_DAY. If an initial run, START time does not have to be the same
as SOURCE_START.

Data type: 3 integers Valid range: 0-365 for day, 0-23 for hour, 0-59 for minute.

Examples:

• START = 80,0,0

See also:

• SOURCE_START

Back to top

START_DAY
Calendar starting day.

Data type: integer
Default: 80
Valid range: 1 to 365

Back to top

START_YEAR
Starting year for the run.

Data type: integer
Default: 2002

Back to top

STEP
Model time-step in seconds. Default value is 120, although during periods of quiet solar activity, the model will
run fine at 180. During periods of intense solar activity (e.g., F10.7 > 200, or high magnitude BZ southward),
the model may become numerically unstable. In this case, reducing the timestep to as low as 60 seconds may
help the model get through the rough period.

Data type: integer
Default: Usually 120 or 180

4.2. Explanation of Valid Namelist Parameters 27

TIEGCM Documentation, Release 1.95

Back to top

STOP
Model stop time for the run. Model time is specified as a 3-integer triplet: day,hour,minute.

Data type: 3 integers
Valid range: 0-365 for day, 0-23 for hour, 0-59 for minute.

Example:

• STOP = 81,0,0

Back to top

SWDEN or SWDEN_TIME
Solar Wind Density (#/cm-3). Can be specified as either a constant (SWDEN), or series of time-dependent
values (SWDEN_TIME). If IMF_NCFILE is set and SWDEN is not provided, then it SWDEN will be taken
from the IMF data file.

Data type: real or real array

Examples:

• SWDEN = 4.0 ; constant for entire run

• SWDEN_TIME = 80,0,0,2., 80,1,0,3., 80,2,0,4. ; time series

See also:

• IMF_NCFILE

Back to top

SWVEL or SWVEL_TIME
Solar Wind Velocity (Km/s). Can be specified as either a constant (SWVEL), or series of time-dependent values
(SWVEL_TIME). If IMF_NCFILE is set and SWVEL is not provided, then it SWVEL will be taken from the
IMF data file.

Data type: real or real array

Examples:

• SWVEL = 400. ; constant for entire run

• SWVEL_TIME = 80,0,0,100., 80,1,0,200., 80,2,0,300. ; time series

See also:

• IMF_NCFILE

Back to top

TIDE
Hough mode amplitudes and phases of the semi-diurnal tide. If GSWM tidal perturbations are specified, TIDE
should be set to 0.

Note: TIDE and TIDE2 should be specified only for experiments where amplitude and phases of
the tides must be used. Normally, GSWM tides are specified instead of TIDE,TIDE2.

28 Chapter 4. Run Control Parameters: The Namelist Input File

TIEGCM Documentation, Release 1.95

Data type: 10 reals

Example:

TIDE= 1.9300E+04, 1.5000E+04, 2.3100E+04, 0.7700E+04, 0.1660E+04,
-2.600E+00, 0.000E+00, -3.300E+00, 4.2000E+00, 5.0000E+00

See also:

• GSWM_MI_SDI_NCFILE

• GSWM_NM_SDI_NCFILE

Back to top

TIDE2
Hough mode amplitudes and phases of the diurnal tide. If GSWM tidal perturbations are specified, TIDE2
should be set to 0.

Note: TIDE and TIDE2 should be specified only for experiments where amplitude and phases of
the tides must be used. Normally, GSWM tides are specified instead of TIDE,TIDE2.

Data type: 2 floats

Example:

TIDE2 = 4.1E+4, -3.7

See also:

• GSWM_MI_DI_NCFILE

• GSWM_NM_DI_NCFILE

Back to top

4.2. Explanation of Valid Namelist Parameters 29

TIEGCM Documentation, Release 1.95

30 Chapter 4. Run Control Parameters: The Namelist Input File

CHAPTER

FIVE

STRUCTURE OF OUTPUT HISTORY
FILES

5.1 NetCDF Output Files (netCDF)

TIEGCM history files are output in netCDF, a self-describing platform-independent data format written and main-
tained by the UCAR Unidata program.

Each netCDF file contains one or more histories, i.e., the state of the model output fields at a discrete instant in model
time. Here is an example of the metadata content of a sample primary history file: primary.ncd. This example file
contains six daily histories (days 355 to 360 of 2002). This metadata is obtained via the “ncdump” command in the
netCDF utilities. This example ncdump file contains data values for scalar and singly-dimensioned vectors only.

TIEGCM history files are “CF compliant”, i.e., they conform to the NetCDF Climate and Forecast (CF) Metadata
Convention.

5.2 Primary and Secondary History Files

“Primary” history files contain the “prognostic” fields necessary to restart the model. They can be specified in namelist
input as the SOURCE file for starting the model in an initial run (a continuation run does not specify a SOURCE file,
and is continued from the START time found on the first OUTPUT file). Typically, daily histories are stored on
primary history files.

Fields on primary histories necessary for start-up of the TIEGCM are as follows: TN, UN, VN, O2, O1, N4S, NO,
O+, N2D, TI, TE, NE, O2P, OMEGA, Z, POTEN

“Secondary” history files contain diagnostic fields and/or primary history fields. Fields to be saved on the secondary
history files are listed by the namelist input parameter SECFLDS. Diagnostics can be saved by calling subroutine addfld
in the code (addfld.F), or by including one or more of the “standard” diagnostic fields available via the diagnostics
module (diags.F). Secondary histories are often saved at a higher temporal resolution than primary histories, typically
hourly. Here is an ncdump of an example secondary history file.

31

http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu
http://cf-pcmdi.llnl.gov
http://cf-pcmdi.llnl.gov

TIEGCM Documentation, Release 1.95

32 Chapter 5. Structure of Output History Files

CHAPTER

SIX

SAVING DIAGNOSTIC FIELDS

The diagnostics module (diags.F) in the TIEGCM will calculate and save diagnostic fields to the secondary his-
tories. The user can add any subset of these fields to the SECFLDS parameter list in the namelist input file. See the
diagnostics namelist example.

6.1 Table of Available Diagnostics

Following is a table of diagnostic fields that can be saved on secondary histories by including the short names in the
SECFLDS namelist input parameter. Click on the short name to obtain detailed information about the calculation and
saving of a diagnostic field.

On the history files, “Short Name” will be the variable name, and “Long Name” and “Units” will be attributes of the
variable. “Grid” refers to the number of dimensions (2d lat-lon, or 3d lat-lon-level), and whether the field is on the
geographic or geomagnetic grid.

A text version of the table is also available, and is printed to stdout by a model
run (ordering of the fields in the text table may be different than in the below table).

33

TIEGCM Documentation, Release 1.95

Short Name Long Name Units Grid
CO2_COOL CO2 Cooling erg/g/s 3d geo
NO_COOL NO Cooling erg/g/s 3d geo
DEN Total Neutral Density g/cm3 3d geo
HEATING Total Heating erg/g/s 3d geo
SCHT Pressure Scale Height km 3d geo
SIGMA_HAL Hall Conductivity S/m 3d geo
SIGMA_PED Pedersen Conductivity S/m 3d geo
LAMDA_HAL Hall Ion Drag Coefficient 1/s 3d geo
LAMDA_PED Pedersen Ion Drag Coefficient 1/s 3d geo
UI_ExB Zonal Ion Drift cm/s 3d geo
VI_ExB Meridional Ion Drift cm/s 3d geo
WI_ExB Vertical Ion Drift cm/s 3d geo
MU_M Molecular Viscosity Coefficient g/cm/s 3d geo
WN Neutral Vertical Wind cm/s 3d geo
O_N2 O/N2 Ratio [none] 3d geo
QJOULE Joule Heating erg/g/s 3d geo
QJOULE_INTEG Height-integrated Joule Heating erg/cm2/s 2d geo
HMF2 Height of the F2 Layer km 2d geo
NMF2 Peak Density of the F2 Layer 1/cm3 2d geo
TEC Total Electron Content 1/cm2 2d geo
JE13D Eastward current density (3d) A/m2 3d mag
JE23D Downward current density (3d) A/m2 3d mag
JQR Upward current density (2d) A/m2 2d mag
KQLAM Height-integ current density (+north) A/m 2d mag
KQPHI Height-integ current density (+east) A/m 2d mag

6.2 Saving Fields/Arrays from the Source Code

In addition to the “sanctioned” diagnostics, arbitrary 2d and 3d arrays can be saved from the model to
secondary histories by inserting a call to subroutine addfld (addfld.F) in the source code. (See the
chapter on Modifying Source Code in this document for information about modifying the source code.)
There are many examples of this in the source code, just grep on “call addfld”. For more information
about how to make calls to addfld, please see comments in the addfld.F source file.

Here are a couple of examples of addfld calls from near the end of subroutine qrj (qrj.F). These calls are
inside a latitude loop, where the loop variable index is “lat”. Normally, in parallel code, subdomains of
the field are passed, e.g., lon0:lon1 and lat0:lat1:

call addfld(’QO2P’ ,’ ’,’ ’, qo2p(lev0:lev1,lon0:lon1,lat),
| ’lev’,lev0,lev1,’lon’,lon0,lon1,lat)
call addfld(’QN2P’ ,’ ’,’ ’, qn2p(lev0:lev1,lon0:lon1,lat),
| ’lev’,lev0,lev1,’lon’,lon0,lon1,lat)
call addfld(’QNP’ ,’ ’,’ ’, qnp(lev0:lev1,lon0:lon1,lat),
| ’lev’,lev0,lev1,’lon’,lon0,lon1,lat)

The calling sequence for subroutine addfld is explained in comments at the top of source file addfld.F.

6.3 Details of Diagnostic Field Calculations

CO2_COOL
Diagnostic field: CO2 Cooling (erg/g/s):

34 Chapter 6. Saving Diagnostic Fields

TIEGCM Documentation, Release 1.95

diags(n)%short_name = ’CO2_COOL’
diags(n)%long_name = ’CO2 Cooling’
diags(n)%units = ’erg/g/s’
diags(n)%levels = ’lev’
diags(n)%caller = ’newton.F’

This field is calculated in newton.F and passed to mkdiag_CO2COOL (diags.F), where it is saved to the
secondary history. The calculation of CO2 cooling in newton.F is as follows:

co2_cool(k,i) = 2.65e-13*nco2(k,i)*exp(-960./tn(k,i))*
| avo*((o2(k,i)*rmassinv_o2+(1.-o2(k,i)-o1(k,i))*rmassinv_n2)*
| aco2(k,i)+o1(k,i)*rmassinv_o1*bco2(k,i))

Sample images: CO2_COOL Global maps at Zp -4, +2:

Back to diagnostics table

NO_COOL
Diagnostic field: NO Cooling (erg/g/s):

diags(n)%short_name = ’NO_COOL’
diags(n)%long_name = ’NO Cooling’
diags(n)%units = ’erg/g/s’
diags(n)%levels = ’lev’
diags(n)%caller = ’newton.F’

This field is calculated in newton.F and passed to mkdiag_NOCOOL (diags.F), where it is saved to the
secondary history. The calculation of NO cooling in newton.F is as follows:

no_cool(k,i) = 4.956e-12*(avo*no(k,i)*rmassinv_no)*
| (ano(k,i)/(ano(k,i)+13.3))*exp(-2700./tn(k,i))

Sample images: NO_COOL Global maps at Zp -4, +2:

6.3. Details of Diagnostic Field Calculations 35

TIEGCM Documentation, Release 1.95

Back to diagnostics table

DEN
Diagnostic field: Total Density (g/cm3):

diags(n)%short_name = ’DEN’
diags(n)%long_name = ’Total Density’
diags(n)%units = ’g/cm3’
diags(n)%levels = ’ilev’
diags(n)%caller = ’dt.F’

This field is calculated in dt.F and passed to mkdiag_DEN (diags.F), where it is saved to the secondary
history. The calculation of DEN (rho) in dt.F is as follows:

do i=lon0,lon1
do k=lev0+1,lev1-1
tni(k,i) = .5*(tn(k-1,i,lat)+tn(k,i,lat))
h(k,i) = gask*tni(k,i)/barm(k,i,lat)
rho(k,i) = p0*expzmid_inv*expz(k)/h(k,i)

enddo ! k=lev0+1,lev1-1
rho(lev0,i) = p0*expzmid_inv*expz(lev0)/h(lev0,i)
rho(lev1,i) = p0*expzmid*expz(lev1-1)/h(lev1,i)

enddo ! i=lon0,lon1

Sample images: DEN Global maps at Zp -4, +2:

36 Chapter 6. Saving Diagnostic Fields

TIEGCM Documentation, Release 1.95

Back to diagnostics table

HEATING
Diagnostic field: Total Heating (erg/g/s):

diags(n)%short_name = ’HEATING’
diags(n)%long_name = ’Total Heating’
diags(n)%units = ’erg/g/s’
diags(n)%levels = ’lev’
diags(n)%caller = ’dt.F’

This field is calculated in dt.F and passed to mkdiag_HEAT (diags.F), where it is saved to the secondary
history. The calculation of HEATING (rho) in dt.F sums the following heat sources:

•Total solar heating (see qtotal in qrj.F)

•Heating from 4th order horizontal diffusion

•Heating due to atomic oxygen recombination

•Ion Joule heating

•Heating due to molecular diffusion

Sample images: HEATING Global maps at Zp -4, +2:

Back to diagnostics table

HMF2
Diagnostic field (2d lat x lon): Height of the F2 Layer (km):

diags(n)%short_name = ’HMF2’
diags(n)%long_name = ’Height of the F2 Layer’
diags(n)%units = ’km’
diags(n)%levels = ’none’ ! hmf2 is 2d lon x lat
diags(n)%caller = ’elden.F’

The height of the F2 layer is calculated and saved by subroutines mkdiag_HNMF2 and hnmf2 in source file
diags.F.

Sub mkdiag_HNMF2 is called by subroutine elden in source file elden.F, as follows:

call mkdiag_HNMF2(‘HMF2’,z,electrons,lev0,lev1,lon0,lon1,lat)

6.3. Details of Diagnostic Field Calculations 37

TIEGCM Documentation, Release 1.95

Note: Occaisionally this algorithm will return the peak electron density in the E-region, instead of the F-
region, in small areas of the global domain, usually at high latitide. This can result in pockets of anonymously
low values for HMF2, e.g., around 125 km.

Sample images: HMF2 Global map:

Back to diagnostics table

NMF2
Diagnostic field (2d lat x lon): Peak Density of the F2 Layer (1/cm3):

diags(n)%short_name = ’NMF2’
diags(n)%long_name = ’Peak Density of the F2 Layer’
diags(n)%units = ’1/cm3’
diags(n)%levels = ’none’ ! nmf2 is 2d lon x lat
diags(n)%caller = ’elden.F’

The peak density of the the F2 layer is calculated and saved by subroutines mkdiag_HNMF2 and hnmf2 in source
file diags.F.

Sub mkdiag_HNMF2 is called by subroutine elden in source file elden.F, as follows:

call mkdiag_HNMF2(‘NMF2’,z,electrons,lev0,lev1,lon0,lon1,lat)

38 Chapter 6. Saving Diagnostic Fields

TIEGCM Documentation, Release 1.95

Sample images: NMF2 Global map:

Back to diagnostics table

TEC
Diagnostic field (2d lat x lon): Total Electron Content (1/cm2):

diags(n)%short_name = ’TEC’
diags(n)%long_name = ’Total Electron Content’
diags(n)%units = ’1/cm2’
diags(n)%levels = ’none’ ! 2d lon x lat
diags(n)%caller = ’elden.F’

Total Electron Content is calculated by subroutine mkdiag_TEC in source file diags.F, as follows:

!
! Integrate electron content in height at current latitude:

tec(:) = 0.
do i=lon0,lon1
do k=lev0,lev1-1
tec(i) = tec(i)+(z(k+1,i)-z(k,i))*electrons(k,i)

enddo
enddo

Subroutine mkdiags_TEC is called by subroutine elden in source file elden.F as follows:

6.3. Details of Diagnostic Field Calculations 39

TIEGCM Documentation, Release 1.95

call mkdiag_TEC(’TEC’,tec,z,electrons,lev0,lev1,lon0,lon1,lat)

Sample images: TEC Global map

Back to diagnostics table

SCHT
Diagnostic field: Pressure Scale Height (km):

diags(n)%short_name = ’SCHT’
diags(n)%long_name = ’Pressure Scale Height’
diags(n)%units = ’km’
diags(n)%levels = ’lev’
diags(n)%caller = ’addiag.F’

The Pressure Scale Height is calculated from the geopotential and saved by subroutine mkdiag_SCHT in source
file diags.F. This code summarizes the calculation:

!
! Take delta Z:

do j=lat0,lat1
do i=lon0,lon1
do k=lev0,lev1-1
pzps(k,i) = zcm(k+1,i,j)-zcm(k,i,j)

enddo

40 Chapter 6. Saving Diagnostic Fields

TIEGCM Documentation, Release 1.95

pzps(lev1,i) = pzps(lev1-1,i)
!
! Generic for dlev 0.5 or 0.25 resolution:

pzps(:,i) = pzps(:,i)/dlev
enddo ! i=lon0,lon1
pzps = pzps*1.e-5 ! cm to km

enddo ! j=lat0,lat1

Subroutine mkdiag_SCHT is called from subroutine addiag (source file addiag.F).

Sample images: SCHT Global maps at Zp -4, +2:

Back to diagnostics table

SIGMA_HAL
Diagnostic field: Hall Conductivity (S/m):

diags(n)%short_name = ’SIGMA_HAL’
diags(n)%long_name = ’Hall Conductivity’
diags(n)%units = ’S/m’
diags(n)%levels = ’lev’
diags(n)%caller = ’lamdas.F’

The Hall Conductivity is calculated by subroutine lamdas (source file lamdas.F), and passed to sub mk-
diag_SIGMAHAL (diags.F), where it is saved to secondary histories. The calculation in lamdas.F is summa-
rized as follows:

! Pedersen and Hall conductivities (siemens/m):
! Qe_fac includes conversion from CGS to SI units
! -> e/B [C/T 10^6 m^3/cm^3], see above.
! number densities [1/cm^3]
!

do i=lon0,lon1
do k=lev0,lev1-1

!
! ne = electron density assuming charge equilibrium [1/cm3]:

ne(k,i) = op(k,i)+o2p(k,i)+nop(k,i)
!
! Hall conductivity [S/m] (half level):

sigma_hall(k,i) = qe_fac(i)*
| (ne (k,i)/(1.+rnu_ne (k,i)**2)-

6.3. Details of Diagnostic Field Calculations 41

TIEGCM Documentation, Release 1.95

| op (k,i)/(1.+rnu_op (k,i)**2)-
| o2p(k,i)/(1.+rnu_o2p(k,i)**2)-
| nop(k,i)/(1.+rnu_nop(k,i)**2))

enddo ! k=lev0,lev1-1
enddo ! i=lon0,lon1

Sample images: SIGMA_HAL Global maps at Zp -4, +2:

Back to diagnostics table

SIGMA_PED
Diagnostic field: Pedersen Conductivity (S/m):

diags(n)%short_name = ’SIGMA_PED’
diags(n)%long_name = ’Pedersen Conductivity’
diags(n)%units = ’S/m’
diags(n)%levels = ’lev’
diags(n)%caller = ’lamdas.F’

The Pedersen Conductivity is calculated by subroutine lamdas (source file lamdas.F), and passed to sub
mkdiag_SIGMAPED (diags.F), where it is saved to secondary histories. The calculation in lamdas.F is sum-
marized as follows:

! Pedersen and Hall conductivities (siemens/m):
! Qe_fac includes conversion from CGS to SI units
! -> e/B [C/T 10^6 m^3/cm^3], see above.
! number densities [1/cm^3]
!

do i=lon0,lon1
do k=lev0,lev1-1

!
! ne = electron density assuming charge equilibrium [1/cm3]:

ne(k,i) = op(k,i)+o2p(k,i)+nop(k,i)
!
! Pedersen conductivity [S/m] (half level):

sigma_ped(k,i) = qe_fac(i)*
| ((op (k,i)*rnu_op (k,i)/(1.+rnu_op (k,i)**2))+
| (o2p(k,i)*rnu_o2p(k,i)/(1.+rnu_o2p(k,i)**2))+
| (nop(k,i)*rnu_nop(k,i)/(1.+rnu_nop(k,i)**2))+
| (ne (k,i)*rnu_ne (k,i)/(1.+rnu_ne (k,i)**2)))

42 Chapter 6. Saving Diagnostic Fields

TIEGCM Documentation, Release 1.95

enddo ! k=lev0,lev1-1
enddo ! i=lon0,lon1

Sample images: SIGMA_PED Global maps at Zp -4, +2:

Back to diagnostics table

LAMDA_HAL
Diagnostic field: Hall Ion Drag Coefficient (1/s):

diags(n)%short_name = ’LAMDA_HAL’
diags(n)%long_name = ’Hall Ion Drag Coefficient’
diags(n)%units = ’1/s’
diags(n)%levels = ’lev’
diags(n)%caller = ’lamdas.F’

The Hall Ion Drag Coefficient is calculated in subroutine lamdas (source file lamdas.F), and saved to seconday
histories by subroutine mkdiag_LAMDAHAL (diags.F).

Sample images: LAMDA_HAL Global maps at Zp -4, +2:

Back to diagnostics table

6.3. Details of Diagnostic Field Calculations 43

TIEGCM Documentation, Release 1.95

LAMDA_PED
Diagnostic field: Hall Ion Drag Coefficient (1/s):

diags(n)%short_name = ’LAMDA_PED’
diags(n)%long_name = ’Pedersen Ion Drag Coefficient’
diags(n)%units = ’1/s’
diags(n)%levels = ’lev’
diags(n)%caller = ’lamdas.F’

The Pedersen Ion Drag Coefficient is calculated in subroutine lamdas (source file lamdas.F), and saved to
secondary histories by subroutine mkdiag_LAMDAPED (diags.F).

Sample images: LAMDA_PED Global maps at Zp -4, +2:

Back to diagnostics table

UI_ExB
Diagnostic field: Zonal Ion Drift (ExB) (cm/s):

diags(n)%short_name = ’UI_ExB’
diags(n)%long_name = ’Zonal Ion Drift (ExB)’
diags(n)%units = ’cm/s’
diags(n)%levels = ’ilev’
diags(n)%caller = ’ionvel.F’

Calculated by subroutine ionvel (ionvel.F):

!
! ion velocities = (e x b/b**2)
! ui = zonal, vi = meridional, wi = vertical

do k=lev0,lev1
do i=lonbeg,lonend
ui(k,i,lat) = -(eey(k,i)*zb(i-2,lat)+eez(k,i)*xb(i-2,lat))*

| 1.e6/bmod(i-2,lat)**2
vi(k,i,lat) = (eez(k,i)*yb(i-2,lat)+eex(k,i)*zb(i-2,lat))*

| 1.e6/bmod(i-2,lat)**2
wi(k,i,lat) = (eex(k,i)*xb(i-2,lat)-eey(k,i)*yb(i-2,lat))*

| 1.e6/bmod(i-2,lat)**2
enddo ! i=lon0,lon1

enddo ! k=lev0,lev1

Subroutine ionvel calls subroutine mkdiag_UI (diags.F) to save the field to secondary histories. The field is
converted from m/s to cm/s in ionvel before the call to mkdiag_UI.

44 Chapter 6. Saving Diagnostic Fields

TIEGCM Documentation, Release 1.95

Sample images: UI_ExB Global maps at Zp -4, +2:

Back to diagnostics table

VI_ExB
Diagnostic field: Meridional Ion Drift (ExB) (cm/s):

diags(n)%short_name = ’VI_ExB’
diags(n)%long_name = ’Meridional Ion Drift (ExB)’
diags(n)%units = ’cm/s’
diags(n)%levels = ’ilev’
diags(n)%caller = ’ionvel.F’

Calculated by subroutine ionvel (ionvel.F):

!
! ion velocities = (e x b/b**2)
! ui = zonal, vi = meridional, wi = vertical

do k=lev0,lev1
do i=lonbeg,lonend
ui(k,i,lat) = -(eey(k,i)*zb(i-2,lat)+eez(k,i)*xb(i-2,lat))*

| 1.e6/bmod(i-2,lat)**2
vi(k,i,lat) = (eez(k,i)*yb(i-2,lat)+eex(k,i)*zb(i-2,lat))*

| 1.e6/bmod(i-2,lat)**2
wi(k,i,lat) = (eex(k,i)*xb(i-2,lat)-eey(k,i)*yb(i-2,lat))*

| 1.e6/bmod(i-2,lat)**2
enddo ! i=lon0,lon1

enddo ! k=lev0,lev1

Subroutine ionvel calls subroutine mkdiag_VI (diags.F) to save the field to secondary histories. The field is
converted from m/s to cm/s in ionvel before the call to mkdiag_VI.

Sample images: VI_ExB Global maps at Zp -4, +2:

6.3. Details of Diagnostic Field Calculations 45

TIEGCM Documentation, Release 1.95

Back to diagnostics table

WI_ExB
Diagnostic field: Vertical Ion Drift (ExB) (cm/s):

diags(n)%short_name = ’WI_ExB’
diags(n)%long_name = ’Vertical Ion Drift (ExB)’
diags(n)%units = ’cm/s’
diags(n)%levels = ’ilev’
diags(n)%caller = ’ionvel.F’

Calculated by subroutine ionvel (ionvel.F):

!
! ion velocities = (e x b/b**2)
! ui = zonal, vi = meridional, wi = vertical

do k=lev0,lev1
do i=lonbeg,lonend
ui(k,i,lat) = -(eey(k,i)*zb(i-2,lat)+eez(k,i)*xb(i-2,lat))*

| 1.e6/bmod(i-2,lat)**2
vi(k,i,lat) = (eez(k,i)*yb(i-2,lat)+eex(k,i)*zb(i-2,lat))*

| 1.e6/bmod(i-2,lat)**2
wi(k,i,lat) = (eex(k,i)*xb(i-2,lat)-eey(k,i)*yb(i-2,lat))*

| 1.e6/bmod(i-2,lat)**2
enddo ! i=lon0,lon1

enddo ! k=lev0,lev1

Subroutine ionvel calls subroutine mkdiag_UI (diags.F) to save the field to secondary histories. The field is
converted from m/s to cm/s in ionvel before the call to mkdiag_WI.

Sample images: WI_ExB Global maps at Zp -4, +2:

46 Chapter 6. Saving Diagnostic Fields

TIEGCM Documentation, Release 1.95

Back to diagnostics table

MU_M
Diagnostic field: Molecular Viscosity Coefficient (g/cm/s):

diags(n)%short_name = ’MU_M’
diags(n)%long_name = ’Molecular Viscosity Coefficient’
diags(n)%units = ’g/cm/s’
diags(n)%levels = ’lev’
diags(n)%caller = ’cpktkm.F’

The Molecular Viscosity Coefficient is calculated by subroutine cpktkm (source file cpktkm.F), and saved to
secondary histories by subroutine mkdiag_MU_M (diags.F). The calculation in cpktkm is summarized as
follows:

fkm(k,i) = po2(k,i)*4.03 + pn2(k,i)*3.42 + po1(k,i)*3.9

Sample images: MU_M Global maps at Zp -4, +2:

Back to diagnostics table

WN
Diagnostic field: Neutral Vertical Wind (cm/s):

6.3. Details of Diagnostic Field Calculations 47

TIEGCM Documentation, Release 1.95

diags(n)%short_name = ’WN’
diags(n)%long_name = ’NEUTRAL VERTICAL WIND (plus up)’
diags(n)%units = ’cm/s’
diags(n)%levels = ’ilev’
diags(n)%caller = ’swdot.F’

Note: This 3d field is calculated on fixed pressure surfaces ln(p0/p), i.e., there is no interpolation to height.

Calculated from OMEGA (vertical motion) and pressure scale height by subroutine mkdiag_WN in source file
diags.F:

!---
subroutine mkdiag_WN(name,omega,zcm,lev0,lev1,lon0,lon1,lat)

!
! Neutral Vertical Wind, from vertical motion OMEGA and scale height.
! Scale height pzps is calculated from input geopotential z (cm).
!
! Args:

character(len=*),intent(in) :: name
integer,intent(in) :: lev0,lev1,lon0,lon1,lat
real,intent(in),dimension(lev0:lev1,lon0:lon1) :: omega,zcm

!
! Local:

integer :: i,k,ix
real,dimension(lev0:lev1,lon0:lon1) :: wn
real,dimension(lev0:lev1) :: pzps,omega1

!
! Check that field name is a diagnostic, and was requested:

ix = checkf(name) ; if (ix==0) return
!
! Calculate scale height pzps:

do i=lon0,lon1
do k=lev0+1,lev1-1
pzps(k) = (zcm(k+1,i)-zcm(k-1,i))/(2.*dlev)

enddo
pzps(lev0) = (zcm(lev0+1,i)-zcm(lev0,i))/dlev
pzps(lev1) = pzps(lev1-1)

!
omega1(:) = omega(:,i)
omega1(lev1) = omega1(lev1-1)

!
! Output vertical wind (cm):

wn(:,i) = omega1(:)*pzps(:)
enddo ! i=lon0,lon1

call addfld(diags(ix)%short_name,diags(ix)%long_name,
| diags(ix)%units,wn,’lev’,lev0,lev1,’lon’,lon0,lon1,lat)

end subroutine mkdiag_WN
!---

Called by: subroutine swdot in source file swdot.F as follows:

do lat=lat0,lat1
call mkdiag_WN(’WN’,w(:,lon0:lon1,lat),z(:,lon0:lon1,lat),lev0,lev1,lon0,lon1,lat)

enddo

Sample images: WN Global maps at Zp -4, +2:

48 Chapter 6. Saving Diagnostic Fields

TIEGCM Documentation, Release 1.95

Back to diagnostics table

O_N2
Diagnostic field: O/N2 RATIO:

diags(n)%short_name = ’O_N2’
diags(n)%long_name = ’O/N2 RATIO’
diags(n)%units = ’ ’
diags(n)%levels = ’lev’
diags(n)%caller = ’comp.F’

Note: Please note that this field is calculated at constant pressure surfaces (ln(p0/p)), and is very sensitive to
fluctuations in the height of the pressure surfaces. If this field is interpolated to constant height surfaces, it will
look very different than when plotted on pressure surfaces.

Note: Also note that O/N2 is a 3d field (not integrated in the vertical coordinate), and is the quotient of the
mixing ratios of the species (i.e., there is no units conversion from MMR).

O/N2 is calculated and saved by subroutine mkdiag_O_N2 in source file diags.F:

!---
subroutine mkdiag_O_N2(name,o1,o2,lev0,lev1,lon0,lon1,lat)

!
! Calculate O/N2 ratio from o2 and o (mmr).
! In mass mixing ratio, this is simply o/(1-o2-o)
!
! Args:

character(len=*),intent(in) :: name
integer,intent(in) :: lev0,lev1,lon0,lon1,lat
real,intent(in),dimension(lev0:lev1,lon0:lon1) :: o1,o2

!
! Local:

integer :: ix
real,dimension(lev0:lev1,lon0:lon1) :: n2, o_n2

!
! Check that field name is a diagnostic, and was requested:

ix = checkf(name) ; if (ix==0) return
!

6.3. Details of Diagnostic Field Calculations 49

TIEGCM Documentation, Release 1.95

! N2 mmr:
n2 = 1.-o2-o1

!
! O/N2 ratio:

o_n2 = o1/n2

call addfld(diags(ix)%short_name,diags(ix)%long_name,
| diags(ix)%units,o_n2,’lev’,lev0,lev1,’lon’,lon0,lon1,lat)

end subroutine mkdiag_O_N2
!---

Called by: subroutine comp in source file comp.F as follows:

call mkdiag_O_N2(’O_N2’,o1_upd(:,lon0:lon1,lat),
| o2_upd(:,lon0:lon1,lat),lev0,lev1,lon0,lon1,lat)

Sample images: O_N2 Global maps at Zp -4, +2:

Back to diagnostics table

QJOULE
Diagnostic field: Joule Heating (erg/g/s):

diags(n)%short_name = ’QJOULE’
diags(n)%long_name = ’Joule Heating’
diags(n)%units = ’erg/g/s’
diags(n)%levels = ’lev’
diags(n)%caller = ’qjoule.F’

Total Joule Heating is calculated in source file qjoule.F as qji_tn, and is passed to subroutine mk-
diag_QJOULE (diags.F), where it is saved to secondary histories. The following code summarizes the
calculation in qjoule.F:

do i=lon0,lon1
do k=lev0,lev1-1
scheight(k,i) = gask*tn(k,i)/

| (.5*(barm(k,i)+barm(k+1,i))*grav)
vel_zonal(k,i) = .5*(ui(k,i)+ui(k+1,i))-un(k,i) ! s2
vel_merid(k,i) = .5*(vi(k,i)+vi(k+1,i))-vn(k,i) ! s3
vel_vert(k,i) = .5*(wi(k,i)+wi(k+1,i)-scheight(k,i)*

50 Chapter 6. Saving Diagnostic Fields

TIEGCM Documentation, Release 1.95

| (w(k,i)-w(k+1,i)))
enddo ! k=lev0,lev1-1

enddo ! i=lon0,lon1
do i=lon0,lon1
do k=lev0,lev1-1
qji_tn(k,i) = .5*(lam1(k,i)+lam1(k+1,i))*

| (vel_zonal(k,i)**2 + vel_merid(k,i)**2 +
| vel_vert(k,i)**2)

enddo ! k=lev0,lev1-1
enddo ! i=lon0,lon1

call mkdiag_QJOULE(’QJOULE’,qji_tn,lev0,lev1,lon0,lon1,lat)

Sample images: QJOULE Global maps at Zp -4, +2:

Back to diagnostics table

QJOULE_INTEG
Diagnostic field: Height-integrated Joule Heating (W/m^2):

diags(n)%short_name = ’QJOULE_INTEG’
diags(n)%long_name = ’Height-integrated Joule Heating’
diags(n)%units = ’erg/cm2/s’
diags(n)%levels = ’none’
diags(n)%caller = ’qjoule.F’

Note: This field is integrated on pressure surfaces (not height), so is a 2d field. Also note it is first calculated
in W/m^2, then converted to erg/g/cm2, for consistency with the model. See comment below if you would like
the field to be returned in W/m^2.

Calculated and saved by subroutine mkdiag_QJOULE_INTEG in source file diags.F:

!---
subroutine mkdiag_QJOULE_INTEG(name,qji_tn,lev0,lev1,lon0,lon1,
| lat)
use cons_module,only: p0,grav
use init_module,only: zpint

!
! Calculate height-integrated Joule heating (called from qjoule.F)

6.3. Details of Diagnostic Field Calculations 51

TIEGCM Documentation, Release 1.95

! This method is adapted from ncl code provided by Astrid (7/20/11)
!
! Args

character(len=*),intent(in) :: name
integer,intent(in) :: lev0,lev1,lon0,lon1,lat
real,intent(in),dimension(lev0:lev1,lon0:lon1) :: qji_tn

!
! Local:

integer :: ix,k,i
real,dimension(lon0:lon1) :: qji_integ
real,dimension(lev0:lev1,lon0:lon1) :: qj
real :: myp0,mygrav

!
! Check that field name is a diagnostic, and was requested:

ix = checkf(name) ; if (ix==0) return
!
! First integrate to get MKS units W/m^2:
! (If you want these units, comment out the below conversion to CGS)
!

mygrav = grav*.01 ! cm/s^2 to m/s^2
myp0 = p0*1.e-3*100. ! to Pa
qj = qji_tn*.0001 ! ergs/g/s to W/kg 10^(-7)*10^3

qji_integ = 0.
do i=lon0,lon1
do k=lev0,lev1-1
qji_integ(i) = qji_integ(i) + myp0/mygrav*exp(-zpint(k))*

| qj(k,i)*dlev
enddo

enddo
!
! Output in CGS units, to be consistent w/ the model:
! (note that 1 erg/cm^2/s == 1 mW/m^2)

qji_integ = qji_integ*1000. ! W/m^2 to erg/cm^2/s
!
! Save 2d field on secondary history:

call addfld(diags(ix)%short_name,diags(ix)%long_name,
| diags(ix)%units,qji_integ,’lon’,lon0,lon1,’lat’,lat,lat,0)

end subroutine mkdiag_QJOULE_INTEG
!---

Called by: subroutine qjoule_tn in source file qjoule.F as follows:

call mkdiag_QJOULE_INTEG(’QJOULE_INTEG’,qji_tn(:,lon0:lon1),
| lev0,lev1,lon0,lon1,lat)

Sample images: QJOULE_INTEG North polar projection

52 Chapter 6. Saving Diagnostic Fields

TIEGCM Documentation, Release 1.95

Back to diagnostics table

JE13D
Diagnostic field: Eastward current density (A/m2) (3d on geomagnetic grid):

diags(n)%short_name = ’JE13D’
diags(n)%long_name = ’Eastward current density (3d)’
diags(n)%units = ’A/m2’
diags(n)%levels = ’mlev’
diags(n)%caller = ’current.F’

Je1/D is calculated in subroutine nosocrdens in source file current.F, and saved to secondary histories by
subroutine mkdiag_JE13D (diags.F)

Note: JE13D is calculated and saved ONLY if the integer parameter icalkqlam is set to 1 in source file
dynamo.F (the default is icalkqlam=0).

6.3. Details of Diagnostic Field Calculations 53

TIEGCM Documentation, Release 1.95

Sample images: JE13D North polar projection at Zp -4, +2

Back to diagnostics table

JE23D
Diagnostic field: Downward current density (A/m2) (3d on geomagnetic grid):

diags(n)%short_name = ’JE23D’
diags(n)%long_name = ’Downward current density (3d)’
diags(n)%units = ’A/m2’
diags(n)%levels = ’mlev’
diags(n)%caller = ’current.F’

Je2/D is calculated in subroutine nosocrdens in source file current.F, and saved to secondary histories by
subroutine mkdiag_JE23D (diags.F)

Note: JE23D is calculated and saved ONLY if the integer parameter icalkqlam is set to 1 in source file
dynamo.F (the default is icalkqlam=0).

Sample images: JE23D North polar projection at Zp -4, +2

54 Chapter 6. Saving Diagnostic Fields

TIEGCM Documentation, Release 1.95

Back to diagnostics table

JQR
Diagnostic field: Upward current density (A/m2) (2d mlat-mlon on geomagnetic grid):

diags(n)%short_name = ’JQR’
diags(n)%long_name = ’Upward current density (2d)’
diags(n)%units = ’A/m2’
diags(n)%levels = ’none’
diags(n)%caller = ’current.F’

Jqr is calculated in subroutine nosocrrt in source file current.F, and saved to secondary histories by subrou-
tine mkdiag_JQR (diags.F)

Note: Jqr is calculated and saved ONLY if the integer parameter icalkqlam is set to 1 in source file dynamo.F
(the default is icalkqlam=0).

Sample images: JQR North polar projection

6.3. Details of Diagnostic Field Calculations 55

TIEGCM Documentation, Release 1.95

Back to diagnostics table

KQLAM
Diagnostic field: Height-integrated current density (+north) (A/m2) (2d mlat-mlon on geomagnetic grid):

diags(n)%short_name = ’KQLAM’
diags(n)%long_name = ’Height-integrated current density (+north)’
diags(n)%units = ’A/m’
diags(n)%levels = ’none’
diags(n)%caller = ’current.F’

Kqlam is calculated in subroutine nosocrdens in source file current.F, and saved to secondary histories by
subroutine mkdiag_KQLAM (diags.F)

Note: Kqlam is calculated and saved ONLY if the integer parameter icalkqlam is set to 1 in source file
dynamo.F (the default is icalkqlam=0).

56 Chapter 6. Saving Diagnostic Fields

TIEGCM Documentation, Release 1.95

Sample images: KQLAM North polar projection

Back to diagnostics table

KQPHI
Diagnostic field: Height-integrated current density (A/m2) (2d mlat-mlon on geomagnetic grid):

diags(n)%short_name = ’KQPHI’
diags(n)%long_name = ’Height-integrated current density (+east)’
diags(n)%units = ’A/m’
diags(n)%levels = ’none’
diags(n)%caller = ’current.F’

Kqphi is calculated in subroutine nosocrdens in source file current.F, and saved to secondary histories by
subroutine mkdiag_KQLAM (diags.F)

6.3. Details of Diagnostic Field Calculations 57

TIEGCM Documentation, Release 1.95

Note: Kqphi is calculated and saved ONLY if the integer parameter icalkqlam is set to 1 in source file
dynamo.F (the default is icalkqlam=0).

Sample images: KQPHI North polar projection

Back to diagnostics table

58 Chapter 6. Saving Diagnostic Fields

CHAPTER

SEVEN

MODEL SOURCE CODE

The source code is in the src/ subdirectory of the model root directory (modeldir), which is provided in the model
download file.

7.1 The Academic License Agreement

The TIEGCM Open Source Academic Research License Agreement specifies the terms and restric-
tions under which the NCAR/UCAR grants permission to use the model, including the source code, for research,
academic, and non-profit purposes.

7.2 Source Code Flow Diagram

A detailed flow diagram and calling tree of the source code structure is available in single and multi-page pdf files:

Warning: Some details of these flow charts may be out of date with respect to TIEGCM version 1.95

• TIEGCM Code Structure (multi-page pdf)

• TIEGCM Code Structure (single-page pdf)

7.3 Grid Structure and Resolution

The TIEGCM can be configured for two spatial/temporal resolutions (use the modelres shell variable in the job script
to set the model resolution):

• 5 degrees lat x lon, 2 grid points per scale height
(default time step = 120 secs)

• 2.5 degrees lat x lon, 4 grid points per scale height
(default time step = 60 secs)

• The vertical coordinate lev, or Zp, is a log-pressure scale ln(p0/p), where p is pressure and p0 is a reference
pressure. Fields are calculated at either “interface” levels (ilev), or at “midpoint” levels (lev) (see lev and
ilev coordinate definitions below).

– At 5.0 degree horizontal, Zp at interfaces = -7 to +5 by 0.5

– At 2.5 degree horizontal, Zp at interfaces = -7 to +5 by 0.25

59

http://www.hao.ucar.edu/modeling/tgcm/tiegcm1.95/tiegcm_codestruct.pdf
http://www.hao.ucar.edu/modeling/tgcm/tiegcm1.95/tiegcm_code_poster.pdf

TIEGCM Documentation, Release 1.95

Note: To interpolate model fields to constant height surfaces, you should use geometric height, which is
available on the 3d model grid as “ZG” on secondary histories.

The spatial coordinates at the 5-degree resolution are defined as follows:

double lon(lon) ;
lon:long_name = "geographic longitude (-west, +east)" ;
lon:units = "degrees_east" ;

lon = -180, -175, -170, -165, -160, -155, -150, -145, -140, -135, -130,
-125, -120, -115, -110, -105, -100, -95, -90, -85, -80, -75, -70, -65,
-60, -55, -50, -45, -40, -35, -30, -25, -20, -15, -10, -5, 0, 5, 10, 15,
20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105,
110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175 ;

double lat(lat) ;
lat:long_name = "geographic latitude (-south, +north)" ;
lat:units = "degrees_north" ;

lat = -87.5, -82.5, -77.5, -72.5, -67.5, -62.5, -57.5, -52.5, -47.5, -42.5,
-37.5, -32.5, -27.5, -22.5, -17.5, -12.5, -7.5, -2.5, 2.5, 7.5, 12.5,
17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5,
77.5, 82.5, 87.5 ;

double lev(lev) ;
lev:long_name = "midpoint levels" ;
lev:short_name = "ln(p0/p)" ;
lev:units = "" ;
lev:positive = "up" ;
lev:standard_name = "atmosphere_ln_pressure_coordinate" ;
lev:formula_terms = "p0: p0 lev: lev" ;
lev:formula = "p(k) = p0 * exp(-lev(k))" ;

lev = -6.75, -6.25, -5.75, -5.25, -4.75, -4.25, -3.75, -3.25, -2.75, -2.25,
-1.75, -1.25, -0.75, -0.25, 0.25, 0.75, 1.25, 1.75, 2.25, 2.75, 3.25,
3.75, 4.25, 4.75, 5.25, 5.75, 6.25, 6.75, 7.25 ;

double ilev(ilev) ;
ilev:long_name = "interface levels" ;
ilev:short_name = "ln(p0/p)" ;
ilev:units = "" ;
ilev:positive = "up" ;
ilev:standard_name = "atmosphere_ln_pressure_coordinate" ;
ilev:formula_terms = "p0: p0 lev: ilev" ;
ilev:formula = "p(k) = p0 * exp(-ilev(k))" ;

ilev = -7, -6.5, -6, -5.5, -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5,
0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7 ;

Note: The 2.5 degree configuration (“double-resolution”), is not fully tuned and validated in TIEGCM version 1.95.

60 Chapter 7. Model Source Code

TIEGCM Documentation, Release 1.95

7.4 Modifying the Source Code

As a community user, student, research scientist or developer, you may need to modify the model source code. It is
best to do this after building and at least making a default execution of the model (see the QuickStart Section). To
change one or more source files, simply go to the src/ subdirectory in the model root directory modeldir, and edit the
files as necessary. Then return to the working directory workdir and re-execute the job script. It will recompile the
modified files, and any other source files that depend on the modified files, and re-execute the model. Alternatively,
you can enter the execution directory execdir, and recompile the code by typing “gmake” on the command line, then
return to the working directory and re-execute the job script.

7.4. Modifying the Source Code 61

TIEGCM Documentation, Release 1.95

62 Chapter 7. Model Source Code

CHAPTER

EIGHT

THE MAKE/BUILD PROCESS: COMPILE
AND LINK

The TIEGCM model is formally supported on two platform systems: 64-bit Linux, and IBM/AIX. However, the
model has been built and executed on several other platforms. The source code is f90 standard compliant, and is
mostly fixed-format fortran.

Compilers used on Linux systems include Intel’s ifort 11.1 (with OpenMPI), and PGI’s fortran compiler pgf90. The
compiler used on the NCAR IBM/AIX bluefire system is xlf90.

Library dependencies consist mainly of netCDF and MPI. The MPI library is often bundled in with the compiler.
Locations of these libraries are specified in “Make.machine” files, which set platform-specific compile flags and other
parameters for the build process. The following Make.machine files are provided in the scripts/ directory:

• Make.bluefire (NCAR IBM/AIX machine)

• Make.intel_hao64 (ifort compiler on HAO 64-bit Linux desktops)

• Make.pgi_hao32 (pgf90 compiler on HAO 32-bit Linux desktops)

• Make.pgi_hao64 (pgf90 compiler on HAO 64-bit Linux desktops)

One of these files, or the user’s own, is specified by the csh variable “make” in the job script. The specified file is
included in the main Makefile. User’s outside NCAR are encouraged to copy and rename one of these files, and
customize it for your own operating system and compiler.

63

http://www.cita.utoronto.ca/MISC/computing_guide/docs/Intel_Fortran_v8.1/fcompindex.htm
http://www.pgroup.com/products/index.htm
http://www2.cisl.ucar.edu/docs/bluefire-user-guide

TIEGCM Documentation, Release 1.95

64 Chapter 8. The Make/build process: compile and link

CHAPTER

NINE

BENCHMARK TEST RUNS OF V1.95

A series of benchmark runs are made for each release of the TIEGCM (since v1.93). Job scripts and namelist input
files for these runs are available in subdirectories in the tests/ directory.

Netcdf files with the first history of each benchmark run are available in the data download file. These files can be
used as start-up SOURCE files to reproduce the runs. The namelist input files and job scripts used to make the runs
are provided in the tests/ directory of the release.

Following is a summary of benchmark runs made by TIEGCM version 1.95. For full history file output, steady-state
start-up files, and “sanity check” plots of the benchmark runs made by version 1.95, please see Release Documentation

9.1 Control

control: 5-day control runs, started from steady-state histories at both equinoxes and both solstices, and at solar
minimum and maximum conditions:

mareqx: March Equinox (day 80)
junsol: June Solstice (day 172)
sepeqx: September Equinox (day 264)
decsol: December Solstice (day 355)

* Solar Minimum::

POWER = 18.
CTPOTEN = 30.
F107 = 70.
F107A = 70.

* Solar Maximum::

POWER = 39.
CTPOTEN = 60.
F107 = 200.
F107A = 200.

9.2 Climatology

climatology: Full-year Climatology with constant solar forcing:

• Heelis potential model with constant solar forcing:

65

http://www.hao.ucar.edu/modeling/tgcm/tiegcm1.95/release/_build/html

TIEGCM Documentation, Release 1.95

POWER = 18.
CTPOTEN = 30.
F107 = 100.
F107A = 100.

9.3 December, 2006 “AGU” Storm Case

dec2006: December, 2006 “AGU” storm case:

• Heelis potential model with GPI (Kp) data

• Weimer potential model with IMF data (F10.7 from GPI)

9.4 November, 2003 Storm Case

nov2003: November 19-24 (days 323-328), 2003 storm case:

• Heelis potential model with GPI (Kp) data

• Weimer potential model with IMF data (F10.7 from GPI)

9.5 Whole Heliosphere Interval

whi2008: Whole Heliosphere interval (WHI) (March 21 to April 16, 2008)

• Heelis potential model with GPI (Kp) data

• Weimer potential model with IMF data (F10.7 from GPI)

Note: For more detailed information and access to history file output, and preliminary post-processing of these runs,
see Release Documentation

66 Chapter 9. Benchmark Test Runs of v1.95

http://www.hao.ucar.edu/modeling/tgcm/tiegcm1.95/release/html

CHAPTER

TEN

POST-PROCESSING AND
VISUALIZATION

TIEGCM netCDF history files can be read by any application with access to the netCDF library, includ-
ing many freely available software packages developed for mainpulating or displaying netCDF data (see
http://www.unidata.ucar.edu/software/netcdf/software.html). At HAO, we often use the netCDF Operators NCO for
file manipulation (subset extracting, concatenation, hyperslabbing, metadata editing, etc). However for visualization,
we typically use one of three post-processors developed at HAO:

10.1 tgcmproc_f90

• tgcmproc_f90 is a batch-style processor written in fortran 90. This program reads a user namelist input file via
stdin, and outputs multi-frame plot files (cgm and/or ps), and output data files (e.g., ascii, netCDF).

• Uses the freely available NCAR Graphics libraries for basic contouring, making maps at various projections,
vector plots, etc.

• Plots 2d horizontal and vertical slices, and time-dependent plots on the model grid.

• Calculates a large number of diagnostics from fields on the histories.

• Custom contouring (setting cmin,cmax,cint)

• Can interpolate to constant height surfaces.

• Can be downloaded from the TGCM website, but the f90 code must be compiled, and NCAR Graphics libraries
must be linked.

10.2 tgcmproc_idl

• tgcmproc_idl is an IDL application for browsing and plotting TIEGCM output, with an easy to use Graphical
User Interface (GUI).

• 2d contouring of horizontal and vertical slices, including maps at various projections.

• Can save images and plots to a variety of image formats.

• Custom contouring (setting cmin,cmax,cint).

• Can interpolate to constant height surfaces.

• Can plot fields on the magnetic grid (tgcmproc_f90 does not do this).

67

http://www.unidata.ucar.edu/software/netcdf/software.html
http://nco.sourceforge.net
http://ngwww.ucar.edu/
http://www.ittvis.com/language/en-US/ProductsServices/IDL.aspx

TIEGCM Documentation, Release 1.95

• Can make and save png movie animations.

• Should run fine for anybody w/ IDL, but IDL is licensed, and can be expensive.

10.3 utproc

• utproc is an IDL/GUI application that makes time-series contours and images including ut vs zp pressure at
selected grid lat x lon locations, and ut vs latitude at selected zp pressure surfaces.

These applications are available at the TGCM download page. Tgcmproc_f90 is best for generating large numbers of
plots in a “batch-style” environment, whereas tgcmproc_idl is best for browsing history files in a GUI interface, and
saving plots or images as desired. The utproc processor is a hybrid in the sense that a series of plots can be setup using
the GUI, and then created when requested.

At HAO, we also use the NCAR Command Language (NCL) for plotting, analysis, and converting to/from various file
formats (GRIB, HDF, etc). NCL scripts can be used to generate customized plots and images, as well as providing a
variety of analysis and file-manipulation tools.

68 Chapter 10. Post-Processing and Visualization

http://www.hao.ucar.edu/modeling/tgcm/download.php
http://www.ncl.ucar.edu/

CHAPTER

ELEVEN

CONTACT INFORMATION

The TIEGCM and related Thermosphere-Ionosphere models have been developed by the “Atmosphere
Ionosphere Magnetosphere” (AIM) Section of the High Altitude Observatory (HAO) at NCAR (see
http://www.hao.ucar.edu/modeling/tgcm).

For information and assistance regarding the software (source code and supporting script infrastructure, including
building and executing the models and using the post-processors, you may contact Ben Foster at foster@ucar.edu.

For questions and information regarding the physics and chemistry implementation of the model, numerical algo-
rithms, and analysis of model results, you may contact any of the following HAO scientists:

• Art Richmond (richmond@ucar.edu): upper atmosphere dynamics and electrodynamics

• Stan Solomon (stans@ucar.edu): airglow, ionosphere chemistry

• Barbara Emery (emery@ucar.edu): auroral processes and parameterization

• Astrid Maute (maute@ucar.edu): tidal dynamics and electro-dynamo code

• Wenbin Wang (wbwang@ucar.edu): mesoscale processes, model coupling

• Liying Qian (lqian@ucar.edu): neutral density, solar irradiance

• Alan Burns (aburns@ucar.edu): thermosphere dynamics and composition

69

http://www.hao.ucar.edu/modeling/tgcm
mailto:foster@ucar.edu
mailto:richmond@ucar.edu
mailto:stans@ucar.edu
mailto:emery@ucar.edu
mailto:maute@ucar.edu
mailto:wbwang@ucar.edu
mailto:lqian@ucar.edu
mailto:aburns@ucar.edu

TIEGCM Documentation, Release 1.95

70 Chapter 11. Contact Information

CHAPTER

TWELVE

GLOSSARY

benchmark runs A series of validation/test runs made with each release of the model. Namelist files and job scripts
used to make these benchmark runs are available in subdirectories under the tests/ directory of the current release
(e.g., namelist input files for the “control” test run are modeldir/tests/control/*.inp).

continuation run A continuation run continues from the last output history of the previous run. That history (START
time) must be on the first OUTPUT file provided by the namelist input file. A continuation run must not specify
a SOURCE file or SOURCE_START time.

datadir The directory containing start-up and other input data files required for running the model. A minimal set of
datadir files are available via download. The datadir is sometimes referred to by the TGCMDATA environment
variable. Additional data files are available via the NCAR Community Data Portal.

diagnostic fields A list of diagnostic fields are available to be saved on secondary history files. See section Saving
Diagnostic Fields.

doc/ Subdirectory under the modeldir containing documentation, e.g., the User’s Guide, Model Description, Release
Notes, etc.

execdir The model execution directory. This is the directory where the model is built and executed. It is typically,
but not necessarilly, a subdirectory of your working directory workdir. When a job script is executed from a
working directory, the execdir is created if it does not already exist. During a model run, output history files are
written to the execdir.

history A model history records the state of the model at a discrete instant in model time. One or more histories are
stored in netCDF history files.

initial run An initial run is started from a history on a SOURCE file (see also SOURCE_START). Subsequent con-
tinuation runs do not provide SOURCE or SOURCE_START, but rather search for the START time on the first
OUTPUT history file provided in the namelist input, and continue the run from there.

job script A csh script in the scripts/ directory which, when executed, will build and execute the model. The user
defines a few shell variables in the job script, such as the modeldir, and the namelist input. For more details,
please see job scripts.

model time TIEGCM model time is represented by an integer triplet: day,hour,minute, where day is the julian day
of the year, and hour is the ut. The variable for model time on history files is mtime(3,ntimes). For example, a
history file may contain 24 hourly histories for day 80: mtime = 80,1,0, 80,2,0, ... 81,0,0.

modeldir The model root directory. This directory typically contains subdirectories src/ (model source code),
scripts/ (utility scripts), doc/ (documentation), and tests/ (test runs). The modeldir is available via download,
and is typically a subdirectory of the model working directory (workdir).

namelist input The model reads user specified parameters from the namelist input file via f90 standard namelist read.
Keyword/Value pairs are read from unit 5, and are validated by the input module (input.F).

71

TIEGCM Documentation, Release 1.95

NCAR Community Data Portal The NCAR Community Data Portal is a public data repository with datasets from
NCAR, UCAR, UOP, and participating organizations. To browse TIEGCM-related files (mostly netCDF history
files for model start-up, or results of benchmark runs), click on the “Models” link, then to the “Thermospheric
General Circulation Models” link, and finally to the desired model version. NetCDF Metadata is available
without actually downloading files.

netCDF TIEGCM output history files are written in netCDF, a self-describing platform-independent data format
written and maintained by the UCAR Unidata program.

resolution The TIEGCM can be run in one of two resolutions:

• 5 x 5 deg lat x lon, 2 grid levels per scale height (dz = 0.50)

• 2.5 x 2.5 deg lat x lon, 4 grid levels per scale height (dz = 0.25)

The resolution is set by the “modelres” shell variable in the TIEGCM job script. See also the section on Grid
Structure and Resolution.

Note: The 2.5-degree resolution model is available in version 1.95, but it is not fully validated or supported by
the public release.

scripts/ Subdirectory under the modeldir containing supporting and utility scripts, including job scripts, the default
namelist input file, several Make files, etc.

src/ Subdirectory under the modeldir containing the model source code (*.F, *.h files).

tests/ Subdirectory under the modeldir. The tests directory contains subdirectories for benchmark runs that were
made for the current release. The subdirectories contain job scripts and namelist input files that can be used
to reproduce benchmark runs for testing and validation purposes. For more information, see the section on
Benchmark Test Runs.

TGCMDATA A unix environment variable that refers to the datadir. This environment variable may be used when
referring to data files in the namelist read file, e.g., “GPI_NCFILE = $TGCMDATA/gpi_xxxxx.nc”. See namelist
read files.

tgcmproc_f90 Post-processor and visualizer for TIEGCM netCDF history files. Written in f90, and available at the
TGCM download site. See tgcmproc_f90.

tgcmproc_idl Post-processor and visualizer for TIEGCM netCDF history files. This processor is Written in IDL
with a GUI, and is available at the TGCM download site. See tgcmproc_idl.

utproc Post-processor and visualizer for TIEGCM netCDF history files. This processor reads time-series history
files and makes ut vs pressure and ut vs latitude contours. It is written in IDL with a GUI, and is available at the
TGCM download site. See utproc.

workdir Your local working directory. This will typically contain the model root directory modeldir, the execution
directory execdir, and related namelist input files, job scripts, stdout files, etc. It may also contain a data
subdirectory datadir.

72 Chapter 12. Glossary

http://cdp.ucar.edu/
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu

CHAPTER

THIRTEEN

INDICES AND TABLES

• genindex

• search

Note: This document was last updated on June 21, 2013

73

TIEGCM Documentation, Release 1.95

74 Chapter 13. Indices and tables

INDEX

A
aix, 7
aurora, 16

B
benchmark runs, 71
bximf, 17
byimf, 17
bzimf, 17

C
calendar_advance, 18
CO2_COOL, 34
colfac, 18
continuation run, 71
ctpoten, 18

D
datadir, 71
default

Linux run, 6
namelist read file, 15

DEN, 36
diagnostic fields, 31, 71

CO2_COOL, 34
DEN, 36
HEATING, 37
HMF2, 37
JE13D, 53
JE23D, 54
JQR, 55
KQLAM, 56
KQPHI, 57
LAMDA_HAL, 43
LAMDA_PED, 43
MU_M, 47
NMF2, 38
NO_COOL, 35
O/N2, 49
QJOULE, 50
QJOULE_INTEG, 51

SCHT, 40
SIGMA_HAL, 41
SIGMA_PED, 42
TEC, 39
UI_ExB, 44
VI_ExB, 45
WI_ExB, 46
WN, 47

doc/, 71
download, 5

E
execdir, 6, 71

F
f107, 18
f107a, 19

G
gpi, 19
gswm, 20

H
HEATING, 37
hist, 20
history, 71
HMF2, 37
hpower, 21

I
ibm, 7
imf, 21
initial run, 71
input, 13

J
JE13D, 53
JE23D, 54
job script, 71
JQR, 55

75

TIEGCM Documentation, Release 1.95

K
kp, 21
KQLAM, 56
KQPHI, 57

L
label, 22
LAMDA_HAL, 43
LAMDA_PED, 43

M
make, 6
model time, 71
modeldir, 6, 71
MU_M, 47
mxhist_prim, 22
mxhist_sech, 23

N
namelist input, 13, 71
namelist input

aurora, 16
bximf, 17
byimf, 17
bzimf, 17
calendar_advance, 18
colfac, 18
ctpoten, 18
f107, 18
f107a, 19
gpi_ncfile, 19
gswm, 20
hist, 20
hpower, 21
imf_ncfile, 21
kp, 21
label, 22
mxhist_prim, 22
mxhist_sech, 23
output, 23
potential_model, 23
secflds, 24
sechist, 25
secout, 26
secstart, 24
secstop, 25
source, 26
source_start, 26
start, 27
start_day, 27
start_year, 27
step, 27
stop, 28
swden, 28

swvel, 28
tide, 28
tide2, 29

NCAR Community Data Portal, 71
netCDF, 72
NMF2, 38
NO_COOL, 35

O
O/N2, 49
output, 23

P
potential_model, 23

Q
QJOULE, 50
QJOULE_INTEG, 51

R
resolution, 72

S
SCHT, 40
scripts/, 72
secflds, 24
sechist, 25
secout, 26
secstart, 24
secstop, 25
SIGMA_HAL, 41
SIGMA_PED, 42
source, 26
source_start, 26
src/, 72
start, 27
start_day, 27
start_year, 27
step, 27
stop, 28
swden, 28
swvel, 28

T
TEC, 39
tests/, 72
TGCMDATA, 72
tgcmproc_f90, 72
tgcmproc_idl, 72
tide, 28
tide2, 29

U
UI_ExB, 44

76 Index

TIEGCM Documentation, Release 1.95

utproc, 72

V
VI_ExB, 45

W
WI_ExB, 46
WN, 47
workdir, 72

Index 77

	Introduction
	QuickStart Procedure
	Downloading the model source code and required data files
	Making a default run on a 64-bit Linux system
	Running the model on IBM/AIX Platforms

	Directory Structure
	Working Directory (workdir)
	Model Directory (modeldir)
	Data Directory (datadir)

	Run Control Parameters: The Namelist Input File
	Example Namelist Input Files
	Explanation of Valid Namelist Parameters

	Structure of Output History Files
	NetCDF Output Files (netCDF)
	Primary and Secondary History Files

	Saving Diagnostic Fields
	Table of Available Diagnostics
	Saving Fields/Arrays from the Source Code
	Details of Diagnostic Field Calculations

	Model Source Code
	The Academic License Agreement
	Source Code Flow Diagram
	Grid Structure and Resolution
	Modifying the Source Code

	The Make/build process: compile and link
	Benchmark Test Runs of v1.95
	Control
	Climatology
	December, 2006 ``AGU'' Storm Case
	November, 2003 Storm Case
	Whole Heliosphere Interval

	Post-Processing and Visualization
	tgcmproc_f90
	tgcmproc_idl
	utproc

	Contact Information
	Glossary
	Indices and tables
	Index

