

HAO Colloquium Series

(Refreshments served)

Speaker: Allen H. Boozer, Columbia University

Time: 1:30 pm

Date: Wednesday, April 27, 2011

Location: CG-1, Room 3131

Title: Constraints on magnetic reconnection and the solar corona from fundamental electrodynamics

Abstract: Traditional magnetic reconnection theory is based on islands and X-points, but Faraday's law implies these concepts are ill defined in three dimensions except for carefully designed toroidal plasmas or in near perfect symmetry. When an X-point can be defined, neighboring magnetic field lines near the X-point separate exponentially. The exponential separation of neighboring magnetic lines is generic throughout the volume of natural plasmas and not limited to the vicinity of isolated lines--only carefully designed laboratory plasmas can avoid this. The number of e-folds in the ratio of the separation of neighboring lines from one end of a natural system to another is not conserved by an ideal evolution. When this ratio reaches about 20 e-folds, dissipative, reconnection-like, phenomena tend to occur, which provides a natural trigger for reconnection. A star must have a corona if the scale height of the electron number density n in its photosphere is sufficiently short compared to the spatial scale of a magnetic field. The corona of a star can be no higher above the photosphere than the height at which the streaming velocity for the parallel current, j/en , reaches the electron thermal velocity. The Dreicer runaway electron effect then accelerates electrons to whatever energy is required to carry the current. Without a corona on the sun, the ratio j/en would increase by roughly $\exp(1000)$ from the photosphere to the tops of magnetic loops. The current density along a magnetic field embedded in a highly conducting medium is naturally extremely large and spatially fractal across the magnetic field due to the exponential separation of neighboring lines.

Plasma Physics and Controlled Fusion 52, 124002 (2010).

The National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation (NSF).

Any opinions, findings, conclusions, or recommendations expressed in this web site
belong to the author and do not necessarily reflect the views of the NSF.

