;------------------------------------------------------------------------ ; ; FOR_P2_10.pro ; ;------------------------------------------------------------------------- ; ; PURPOSE: ; This function computes the term of rank 2 of the element "10" ; of the scattering phase-matrix, P^(2)_10, in any arbitrary frame of reference. ; See Eq. 14 in Landi Degl'Innocenti, A&A 192 (374-379) (1988) ; ; CALLING SEQUENCE: ; for_P2_10(theta_prime, chi_prime, angles, gamma) ; ; INPUTS: ; angles: structure containing ; theta = polar angle of the scattered photon direction [rad] ; chi = azimuthal angle of the scattered photon direction [rad] ; thetaB = polar angle of vector magnetic field [rad] ; chiB = azimuthal angle of vector magnetic field [rad] ; ; theta_prime = polar angle of the incident photon direction [rad] ; chi_prime = azimuthal angle of the incident photon direction [rad] ; ; gamma: Hanle effect parameter => gamma = 0.88 * B * g(J')/A(J',J) ; where B is in gauss and A(J',J) is 1e.7 s units ; See Eq. 16 in Landi Degl'Innocenti, Solar Phys. 102 (1-20) (1985) ; ; ; OUTPUTS: ; term of rank 2 of the element "10" of the scattering phase-matrix, P^(2)_10, ; ; SIDE EFFECTS: ; None. ; ; RESTRICTIONS: ; None. ; ; PROCEDURE: ; Straightforward. ; ; ; CALLED BY: ; FOR_UV_STOKES ; ; CALLS: ; None. ; ; MODIFICATION HISTORY: ; vers. 0. S. Fineschi, R. Susino, 12 October 2017. ; *varified equation 14 transformed 01 to 10 Dec 2023 ; changed integer multipliers to floats ; ; function for_p2_10, theta_prime, chi_prime, angles, gamma ; introducing shorter notations for the trigonometric functions of the scattering geometry theta=angles.theta chi=angles.chi thetaB=angles.thetaB chiB=angles.chiB C1=cos(theta) S1=sin(theta) C2=cos(theta_prime) S2=sin(theta_prime) c=cos(chi-chi_prime) s=sin(chi-chi_prime) CB=cos(thetaB) SB=sin(thetaB) cB1=cos(chi-chiB) sB1=sin(chi-chiB) cB2=cos(chi_prime-chiB) sB2=sin(chi_prime-chiB) ;Hanle effect parameters cI=1./sqrt(1.+gamma^2) sI=gamma/sqrt(1.+gamma^2) cII=1./sqrt(1.+4.*gamma^2) SII=2.*gamma/sqrt(1.+4.*gamma^2) P2_10=(3./8.)*(-2.*((C2*S1-S2*C1*c)^2-S2^2*s^2) $ - 4.*cI*sI*(C2*CB+S2*SB*cB2)*((C2*SB-S2*CB*cB2)*(C1*S1*CB-(1.+C1^2)*SB*cB1)*sB1+((S1*CB-C1*SB*cB1)*(S1*SB+C1*CB*cB1)+CB*SB*sB1^2)*S2*sB2) $ ; - 4*sI^2*(C2*CB+S1*SB*cB2)*((C1*S1*CB-(1+C1^2)*SB*cB1)*S2*sB2*sB1-(C2*SB-S2*CB*cB2)*((S1*CB-C1*SB*cB1)*(S1*SB+C1*CB*cB1)+CB*SB*sB1^2)) $ - 4.*sI^2*(C2*CB+S2*SB*cB2)*((C1*S1*CB-(1.+C1^2)*SB*cB1)*S2*sB2*sB1-(C2*SB-S2*CB*cB2)*((S1*CB-C1*SB*cB1)*(S1*SB+C1*CB*cB1)+CB*SB*sB1^2)) $ - 2.*cII*sII*(((C2*SB-S2*CB*cB2)^2-S2^2*sB2^2)*(C1*S1*SB+(1.+C1^2)*CB*cB1)*sB1+(C2*SB-S2*CB*cB2)*(1.+(C1*CB+S1*SB*cB1)^2-2.*(C1^2+CB^2)*sB1^2)*S2*sB2) $ + sII^2*(((C2*SB-S2*CB*cB2)^2-S2^2*sB2^2)*(1.+(C1*CB+S1*SB*cB1)^2-2.*(C1^2+CB^2)*sB1^2)-4.*(C2*SB-S2*CB*cB2)*(C1*S1*SB+(1.+C1^2)*CB*cB1)*S2*sB2*sB1)) ; ;print, 'P2_10(',chi2,')= ', P2_10 return, P2_10 end ;-------------------------------------------------------------------------