;------------------------------------------------------------------------ ; ; FOR_P2_00.pro ; ;------------------------------------------------------------------------- ; ; PURPOSE: ; This function computes the term of rank 2 of the element "00" ; of the scattering phase-matrix, P^(2)_00, in any arbitrary frame of reference. ; See Eq. 11 in Landi Degl'Innocenti, A&A 192 (374-379) (1988) ; ; CALLING SEQUENCE: ; for_P2_00(theta_prime, chi_prime, angles, gamma) ; ; INPUTS: ; angles: structure containing ; theta = polar angle of the scattered photon direction [rad] (angle between solar local vertical and line-of-sight) ; chi = azimuthal angle of the scattered photon direction [rad] ; thetaB = polar angle of vector magnetic field [rad] ; chiB = azimuthal angle of vector magnetic field [rad] ; ; theta_prime = polar angle of the incident photon direction [rad] ; chi_prime = azimuthal angle of the incident photon direction [rad] ; ; gamma: Hanle effect parameter => gamma = 0.88 * B * g(J')/A(J',J) ; where B is in gauss and A(J',J) is 1e.+7 s units ; See Eq. 16 in Landi Degl'Innocenti, Solar Phys. 102 (1-20) (1985) ; ; ; OUTPUTS: ; term of rank 2 of the element "00" of the scattering phase-matrix, P^(2)_00, ; ; SIDE EFFECTS: ; None. ; ; RESTRICTIONS: ; None. ; ; PROCEDURE: ; Straightforward. ; ; CALLED BY: ; FOR_UV_STOKES ; ; CALLS: ; None. ; ; MODIFICATION HISTORY: ; vers. 0. S. Fineschi, R. Susino, 12 October 2017. ; * cross-checked against eqn 11 Dec 2023 AND FOUND BUG ; second commented line was to fix first commented line but was missing * times ; ; function for_p2_00, theta_prime, chi_prime, angles, gamma ; introducing shorter notations for the trigonometric functions of the scattering geometry theta=angles.theta chi=angles.chi thetaB=angles.thetaB chiB=angles.chiB C1=cos(theta) S1=sin(theta) C2=cos(theta_prime) S2=sin(theta_prime) c=cos(chi-chi_prime) s=sin(chi-chi_prime) CB=cos(thetaB) SB=sin(thetaB) cB1=cos(chi-chiB) sB1=sin(chi-chiB) cB2=cos(chi_prime-chiB) sB2=sin(chi_prime-chiB) ;Hanle effect parameters cI=1./sqrt(1.+gamma^2) sI=gamma/sqrt(1.+gamma^2) cII=1./sqrt(1.+4.*gamma^2) SII=2.*gamma/sqrt(1.+4.*gamma^2) P2_00=(3./8.)*( 2*((C1*C2+S1*S2*c)^2-1./3.) $ + 4.*cI*sI*(C1*CB+S1*SB*cB1)*(C2*CB+S2*SB*cB2)*((C1*SB-S1*CB*cB1)*S2*sB2-(C2*SB-S2*CB*cB2)*S1*sB1) $ - 4.*sI^2*(C1*CB+S1*SB*cB1)*(C2*CB+S2*SB*cB2)*((C1*SB-S1*CB*cB1)*(C2*SB-S2*CB*cB2)+ S1*S2*sB1*sB2) $ ; + 2*cII*sII*(((C1*SB-S1*CB*cB1)^2-S1^2*sB1^2)*(C2*SB-S2*CB*cB2)*S2*sB2-((C2*SB-S2*CB*cB2)^2-S2^2*sB2^2)-(C1*SB-S1*CB*cB1)*S1*sB1)$ ;+ 2.*cII*sII*(((C1*SB-S1*CB*cB1)^2-S1^2*sB1^2)*(C2*SB-S2*CB*cB2)*S2*sB2-((C2*SB-S2*CB*cB2)^2-S2^2*sB2^2)(C1*SB-S1*CB*cB1)*S1*sB1)$ + 2.*cII*sII*(((C1*SB-S1*CB*cB1)^2-S1^2*sB1^2)*(C2*SB-S2*CB*cB2)*S2*sB2-((C2*SB-S2*CB*cB2)^2-S2^2*sB2^2)*(C1*SB-S1*CB*cB1)*S1*sB1)$ - sII^2*(((C1*SB-S1*CB*cB1)^2-S1^2*sB1^2)*((C2*SB-S2*CB*cB2)^2-S2^2*sB2^2)+4.*(C1*SB-S1*CB*cB1)*(C2*SB-S2*CB*CB2)*S1*S2*sB1*sB2)) ; ;print, 'P2_00(',chi2,')= ', P2_00 return, P2_00 end ;-------------------------------------------------------------------------