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ABSTRACT

A model is presented for the static equilibrium of a magnetized, polytropic atmosphere stratified by uniform
gravity and invariant in a Cartesian direction. The profiles of plasma pressure and magnetic shear as functions
of the magnetic stream function, which render the governing equation linear, lead to unphysical features if
these profiles are applied to the infinite half-space bounded below by a plane. These undesirable features are
shown to be removed when these special profiles are localized to a region bounded by a magnetic flux surface,
outside of which is an atmosphere in plane-parallel hydrostatic equilibrium with a potential magnetic field.
Two families of solutions are constructed by direct solution of the Cauchy boundary value problem for the
Laplace equation, one with continuous and the other with discontinuous pressures across this magnetic
boundary. Illustrative solutions are analyzed, with applications to long-lived density enhancements and deple-
tions in the solar corona. In particular, the hydromagnetic stability of pressure discontinuities is studied as an
example of a general result due to Hu (1988). It is pointed out that the stability of the sharp interface between
the prominence cavity and the high-density coronal helmet may be understood in terms of competing effects
arising from density stratification and magnetic curvature. The model presented lays the mathematical

groundwork for the other papers of the series.

Subject headings: MHD — Sun: corona — Sun: magnetic fields

1. INTRODUCTION

In the course of an 11 year solar cycle, new magnetic fluxes
generated in the solar interior make their way into the corona
to spawn a rich variety of plasma structures (e.g., Poland 1986;
Zirin 1988). Their formation, structural properties, evolution,
and eventual disruption are the physical processes in terms of
which one hopes to understand the collective phenomena of
solar activity. At times of high solar activity, rapid changes
down to timescales of less than a second are observed in the
active regions, the flare being the prime example (e.g., Dennis
1985; Tandberg-Hanssen & Emslie 1988). Over larger scales,
structures in the corona can persist for such long periods of
time (days to weeks) that one needs to ask how the forces
creating these structures are kept in equilibrium. Notable are
the conspicuous helmet streamers in eclipse pictures of the
corona (Billings 1966; Newkirk 1967; Sime & Street 1993.
These helmet streamers are of course not truly steady objects.
They evolve gradually in a quasi-steady manner, often ending
in a disruption into a coronal mass ejection (MacQueen 1980;
Fisher 1984; Hundhausen 1988, 1994; Kahler 1992). During
the quasi-steady phase of its existence, the helmet streamer
poses a basic and interesting problem in hydromagnetic equi-
librium (Sturrock & Smith 1968; Pneuman 1972; Pneuman &
Kopp 1971; Parker 1979; Priest 1982; Low 1990). In this series
of papers, we undertake a study of the force balance associated
with long-lived coronal objects. We shall proceed in steps,
beginning with this paper and leading eventually to the con-
struction of a model of the helmet streamer containing the
essential observable features.

We adopt the first approximation that the coronal structure
is in static equilibrium among the Lorentz, pressure, and gravi-
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tational forces (Dungey 1953; Low 1975; Hundhausen, Hund-
hausen, & Zweibel 1981; Uchida & Low 1981). This
approximation is reasonable in the low corona, where the sub-
sonic solar wind may be neglected. As is well known, the
coronal helmet appears bright in scattered white light because
it is a region of enhanced coronal material (Newkirk 1967). A
reasonable interpretation is that the nearly (electrically) per-
fectly conducting helmet material is frozen into and held in
equilibrium by the tension force of closed magnetic fields
arching over a polarity reversal line on the solar surface.
Outside of the helmet, the magnetic fields extend to such great
coronal heights that they are open into interplanetary space
(Parker 1963; Hundhausen 1972, 1977). The solar wind flows
out along these open magnetic fields, which come together
above the helmet to form the magnetic neutral sheet in the long
streamer. At the base of the helmet a low-density cavity is often
found, with a quiescent prominence at the lower part of the
cavity (Tandberg-Hanssen 1974; Serio et al. 1978). The corona
is optically thin. When the viewing angle is favorable, a white-
light image of the corona shows both the helmet and the cavity
to have sharp boundaries which suggest extreme magnetic gra-
dients (Saito & Hyder 1968; Saito & Tandberg-Hanssen 1973).
Although the helmet streamers in reality can be rather compli-
cated in appearance during times of high solar activity, the
above three-part structure—high-density helmet, low-density
cavity, prominence—is quite basic. The discovery and the
study of coronal mass ejections in the past two decades have
placed the helmet streamer in a significant role in solar activ-
ity: it is the organizing structure of the large-scale quiescent
corona and the origin of a majority of mass ejections (Illing &
Hundhausen 1986; Hundhausen 1988, 1994;: Low 1990). A
theory of this aspect of solar activity must begin with a physi-
cal understanding of why the helmet streamer has the three-
part structure. Of basic interest is the magnetic topology
associated with such a structure.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994ApJ...429..876H&amp;db_key=AST

J. - 4797 Z876H

]

r 992

MAGNETOSTATIC STRUCTURES OF SOLAR CORONA. L 877

Even with the simplification of geometric symmetry, the
nonlinear hydromagnetic equations are generally intractable.
As a step toward a more sophisticated model, we study in this
paper, and the one to follow, idealized magnetostatic struc-
tures with spatially localized electric currents. This model is
formulated in § 2, where it is reduced to a Cauchy boundary
value problem for a potential function. Various families of
solutions are presented in § 3, illustrating density enhance-
ments and depletions trapped in magnetic fields. Our results
are summarized and discussed in § 4.

2. THE MATHEMATICAL MODEL

The equations describing the equilibrium of a static, magne-
tized atmosphere are:

ﬁ (VxByx B—Vp—[p+m@S)5S)Igz=0, (1)

V-B=0, )

where B, p, p, and g are, respectively, the magnetic field, the
pressure, the density, and the gravitational acceleration taken
to be uniform in space directed along —Z in standard Carte-
sian coordinates. Equation (1) describes the balance among the
Lorentz, pressure, and gravitational forces. To prepare for the
study of quiescent prominences in the next paper of the series,
we have, for completeness, included the gravitational force on
a discrete mass distribution m, associated with a Dirac delta
function, over some surface S to be interpreted physically as a
prominence sheet (Low & Hundhausen 1994). Taking the
system to be independent of the coordinate x, write the mag-
netic field in the standard form

6A OA

where A is the stream function. This magnetic field is associ-
ated with a current density J = (c/4n)V x B, c being the speed
of light, where

[ _y2y 92 _9Q
VxB—< V2A,az, ay>' @

Equation (1) requires Q to be a strict function of 4 for equi-

librium in the x-direction. Equilibrium in the y-z plane is then
described by

(o, 40 )
o (V A+Q dA)VA + Vp+[p+mS)S)gz=0. (5
In the following subsections we formulate a model for the
magnetostatic atmosphere described by equation (5). This
model is based on a number of assumptions to be introduced
at different stages as the formulation proceeds. Some of these
assumptions are physically motivated, while the others are
introduced for mathematical expediency. Our overriding
concern will be to render this formidably nonlinear problem
tractable, while preserving physical integrity as much as pos-
sible. The end product will be a rich family of (particular)
analytic solutions to equation (5) that, without incorporating
full generality, will nonetheless be shown to exhibit remarkable
versatility in representing the physical properties of the system.

2.1. Plane Prominence Sheet

Let us set the photosphere to be a rigid plane at some fixed
height z = z, > 0. Assume symmetry about the z-axis. Take

the prominence sheet S to be a flat, vertical surface coincident
with the interval zy < a <z <b on the z-axis. This surface
carries a discrete current flowing in the x-direction:

Jorom = Jprom(S)O(S)E (6

generating a discrete Lorentz force along a <z <b on the
z-axis to balance the weight of the prominence sheet:

1
- Jprom(S){By}y=0 = m(S)g . (7)

In equation (5), let us take p and p to describe the pressure
and density, respectively; of the continuous part of the corona,
as opposed to the prominence which is treated as a cold dis-
crete sheet. Hence, p and p are smooth functions of space. The
weight of the prominence sheet, represented by the term with
the delta function, must therefore be balanced by the Lorentz
force represented by the term in VA. To account for this partic-
ular aspect of the balance of forces in equation (5) for the
system symmetric about the z-axis, we rewrite equation (7) as
follows:

x B

prom

m(S)o(S)gz =

hl»— ﬁl»—-

Jprom(8)O(S)VA ®)

noting that dA4/dy = 0 on the z-axis, by symmetry. Equation (5)
then takes the form

1 dQ op(4, 2)
|:4 (VZA +Q > oA + - Jp,om(S)é(S)]VA

Op(A, .
+<L(az—a+pg>z=0, 9

where we have expressed the pressure p in terms of 4 and z as
independent variables. The vectors VA and £ are, in general,
independent, and it follows that the forces in the directions of
these two vectors must vanish scparately:

via+0 s e PLD LBy 5655)=0, (10
%4, 2) +pg=0. (11)

0z

To finally specify the model, we need to describe the coronal
pressure and density p and p. In a realistic model, p and p may
be related to the temperature T by the ideal gas law,

p=RypT, 12)

where R, is the gas constant, and be subject to an equation of
energy balance. To keep the model simple, we take a poly-
tropic atmosphere where

p=FA 13)
VA
_n P(A)
274 4

where P is a free function and n is a constant. Along each
magnetic line of force, 4 is a constant and p is related to p by a
polytropic power law. The ideal gas law gives a temperature
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which increases linearly with height. This is not an unrealistic
feature since one may expect an increase of the coronal tem-
perature with height to some maximum beyond which the tem-
perature decreases with heliocentric distance. In any case, our
main interest lies not in the thermodynamics but in the magne-
tostatic structures of the model. The prescribed pressure and
density automatically satisfy equation (11) describing the
hydrostatic equilibrium along a line of force for any P(A).
What remains is then equation (10) for force balance across the
magnetic field:

dQ 4ndP 4n

a4 + 7 dd + - Jorom(S)0(S) = 0 (15)
for prescribed forms of Q(4), P(4), and Jorom> the last quantity
being related by equation (7) to the prominence discrete mass
m. In general, Q and P are nonlinear functions of 4, and equa-
tion (15) is accordingly nonlinear. Moreover, one cannot
simply prescribe a surface S and give m(S). The source term
Jorom given by equation (7) depends on the stream function 4
through the field component B, on S, whereas A is the
unknown of the problem. It is unclear whether solutions exist
when the model is formulated in this manner. A logically con-
sistent formulation of the problem is to leave S as an unknown
and to prescribe m as a function of A, that is, in terms of the
magnetic flux threading through the desired prominence sheet
in the final solution, as discussed in Wu & Low (1987). This
problem is not generally tractable. To avoid the above mathe-
matical obstacles we examine the physical demands of the
model and adopt a new approach.

V4 +Q

2.2. A Linear Model
For the sake of rendering equation (15) linear, we set

Q=14 (16)
P=a,+a,A, 17

where 4, ay, and a, are constants. If the source term J prom
associated with the sheet located at a < z < b on the z-axis is
given (as a mathematical procedure), equation (15) becomes
1 4na, 4n
VZA == 5 )“2 - —ZTI - —C- Jprom(S)a(S) 5 (18)
a linear Poisson equation with a known source term. This
equation can be solved for A4 subject to, say, a Dirichlet bound-
ary condition as follows: For the domain z > z,, the boundary
value of 4 along z = z,, gives the normal magnetic flux thread-
ing into the atmosphere from the solar surface. To complete
the Dirichlet boundary condition, we demand that |VA|
vanish at infinity in z > z,. For consistency, the mass distribu-
tion m(S) cannot be prescribed but is given a posteriori in terms
of the prescribed J ., and the field component B, associated
with the solution A. In this last step, it is not guaranteed that
m(S) so defined is positive definite, so that configurations with
negative values of m(S) must be rejected as unphysical. Despite
this limitation, the model serves our physical purpose.
The general solution to equation (18) is a linear super-
position of terms:

A= Ashear + Apress + Aprom + Apot ’ (19)
where
VzAshear = _%)’2 s (20)

Vol. 429
VzApress = - % s (21)

2 4n
v Aprom = - ? J prom(S )5(S) ’ (22)
V24, =0. (23)

The four terms on the right-hand side of equation (19) give the
magnetic fields contributed by the field-aligned current, the
pressure-induced cross-field current, the prominence current,
and the currents external to the atmosphere, respectively. It is
convenient to take Agears Apress> ad A, to be fixed particu-
lar solutions to equations (20)-(22), leaving the potential
stream function A4, to be determined by the Dirichlet bound-
ary condition on 4. We set

112
Ashear = ? [r% - y2 - (Z - "0)2] ’ (24)

_ 47a,
s T m—2)n—1)z""2"

The solution A4, and the details of its derivation are given in
Low (1993; hereafter Paper L). The solution Apress 1S an
obvious particular solution to equation (21).

For a prescribed discrete current J,,.(S), a particular solu-
tion A, of equation (22) can be written down using the
standard Green’s function technique. In order to keep the
mathematical development as simple as possible, we seek a
candidate for which either 4, or its magnetic field B,,,, is
expressible in closed form. One possible candidate taken from
Paper L is

Byrom.y — iBprom,: = il(® + ia)'? — (@ + ib)"/?]?

A 25)

3 . 2\1/2 . 211/272 (@ —b)
+55[(a'60+lr0)/ + (o + ird)t7] +iT, (26)

in terms of positive constant parameters a’ and b’ and the
complex variable ® = y + i(z — r,). Note that the origin w = 0
corresponds to the point y = 0, z = r,. The reason for intro-
ducing the constant displacement r, in the direction will
become clear below. (In this and papers to follow, we will freely
use the representation of potential fields by analytic functions
of a complex variable, as described in the Appendix.) Equation
(26) describes a magnetic field which is potential everywhere in
z > z5 >0, except along the interval zy <a <z <b on the
z-axis witha = ry — a’ and b = ry, — b'. Along this interval, the
tangential component of the magnetic field reverses sign
abruptly across the z-axis. This discontinuity in the magnetic
field is associated with a discrete current flowing in the x-
direction, given in terms of the magnetic field by Ampere’s law:

Toeon®) = 3~ [Byrom 5 =0 » @)

where the brackets indicate the discontinuous jump in the z-
component of the magnetic field from y < 0 to y > 0. If this
magnetic field were to be taken over the entire y-z plane, it is in
fact the potential field due to the current sheet at a < z < b and
the image current sheet obtained by inversion about the circle
|w| =r,. Due to the image relationship between the two
current sources, the circle |w| =r, is a line of force of the
magnetic field, as previously noted in Paper L. This property
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becomes important in § 2.3. For the present, the field given by
equation (26) is just a candidate for a potential field contrib-
uted by the prominence sheet. Yet another candidate will be
encountered in § 3.

Except for a final step, the construction of the model is
basically complete since the only task remaining is to deter-
mine A, by using the Dirichlet boundary condition. Once the
net stream function A is determined, equations (4) and (16) give
B, equations (13), (14), and (17) give the distribution of the
coronal plasma, and equation (7) gives the self-consistent
prominence mass distribution on the sheet S.

As noted in Paper L, the solution Ag,.,, diverges to infinity
for (y? + z%)'? - o in z > z, and is thus unphysical if taken
over the whole domain z > z,. Another limitation comes from
Apress Which is associated with the presence of pressure gra-
dients across the magnetic field. Equation (25) shows that the
far regions y — + oo at finite z are dominated by a horizontal
magnetic field of finite strength, whereas we are interested in
magnetic structures which are localized closed loops anchored
to the photosphere z = z,. These two undesirable features can
be removed by limiting the presence of electric currents to a
finite subdomain ¢ in z > z,. This is accomplished by taking
the functional forms Q and P given by equations (16) and (17)
to apply only to a finite subdomain ¢ bounded by a magnetic
line of force A = A,, a constant. In the exterior, we take the
atmosphere to be plane parallel with a potential magnetic field.
While this removes unwanted physical features in the far
region, the model is complicated by the need to solve for the
shape of ¢ as a free boundary problem.

The complication arises from the inadequacy of the pre-
scribed forms of Q and P in equations (16) and (17) to describe
solutions taken over the infinite space. A more sophisticated
prescription allowing for Q and P to take different forms in the
near and far regions could avoid the free boundary problem,
but the nonlinearity inherent in such an approach leads to
generally intractable problems. The free boundary problem is
actually a special case of this large class of nonlinear problems,
namely, one in which the different forms of Q and P apply to
regions separated by a sharp boundary.

Free boundary problems are nontrivial, and it is necessary
to take an additional step in order to avoid having to solve this
kind of problem in generality. We shall treat the region o as
given and seek particular solutions inside and outside of this
region to be suitably matched at the boundary A = 4,. The
boundary A(y, z) = A, is a free fluid boundary whose equi-
librium requires the total pressure to be continuous across it
(Spitzer 1967). The matching of the two solutions across this
boundary leads naturally to a Cauchy boundary value
problem for the Laplace equation, as we will see in § 2.3.
Taking ¢ as given does not allow the arbitrary prescription of
the Dirichlet boundary condition on z = z,. For our purpose,
there is no particular physical interest in the quantitative form
of the normal magnetic flux at z = z,, so this loss of freedom is
not crucial.

2.3. Atmosphere with Spatially Localized V olumetric Electric
Currents

Let us take the subdomain ¢ to be the region bounded by
z =z, and a circular arc do lying on the circle of radius r,
centered at y = 0, z = ry,. The magnetic stream function has a
free additive constant. With no loss of generality, set 4, =0
so that the line of force lying on do is labeled A = 0. Exterior to
g, we have a potential field, with Q = 0, given by 4 = A,

MAGNETOSTATIC STRUCTURES OF SOLAR CORONA. L 879

where
V24,,=0. (28)

This potential field is embedded in a plane-parallel, hydrostatic
atmosphere. To account for this exterior atmosphere, we
replace equation (17)y—originally defined for all space in z >
Zo_with

P=ay,+a,A inside do,

=a, outside do . 29)

The pressure and density in z > z, are then given by equations
(13) and (14) with P defined by equation (29). With this choice
of the constants a, and a, and the identification of do with
A =0, the assumption is made that the plasma pressure is
continuous across the magnetic surface do where 4 = 0. The
case of a discontinuous pressure across do will be taken up in
§ 2.4. For the present case, the continuity of the total pressure
implies that the magnetic field is continuous across de. Since
A = 0 along do, this condition requires the normal derivative
of A to be continuous across do.

We begin with the construction of a particular solution from
which other solutions of the problem can be obtained by a
procedure of linear superposition previously used in Paper L.
This particular solution is constructed by continuing each of
the terms in the linear superposition in equation (19) across do
to an exterior potential field in such a way that the net solution
preserves do as a line of force and has a continuous normal
derivative across do. From Paper L, the nonpotential field
Agnear Obtaining in ¢ can be smoothly matched (with a contin-
uous normal derivative) across the boundary do to the exterior
potential field

2 2 R Y
Ashear,ext = - _;L8— r(z) IOg [LZ"O)_] . (30)
o

Set
Aext = Ashear, ext + Aprom ’ (31)

fixing the potential field in the exterior of ¢. The stream func-
tion A,y is derived from the field given by equation (26). By
virtue of its construction, this magnetic field has a line of force
coinciding with do. Adjust the free constant of A, so that
A, = 0 on do. The problem then reduces to determining the
free potential field 4,,, in equation (19) to ensure that the net
field A matches the external potential field A4.,,. Since the sum
Agpear + Aprom matches A, with continuous normal derivative
at do, we arrive at the Cauchy-type boundary conditions on
A, along da,

Apot = —Apress s (32)
0A 0A
pot _ _ press
or or ’ 33)

to determine A,,, in the domain ¢ governed by Laplace’s equa-
tion (23). The normal derivatives are taken in the radial direc-
tion, denoted by r, from the center of the circle on which do lies.
Although this Cauchy problem is ill-posed, its solution exists
(Courant & Hilbert 1963). The potential solution 4, extrapo-
lated from the Cauchy conditions is analytic except at certain
points or regions of singularity intrinsic to the potential func-
tion itself. If these points or regions are located in z < z,
outside of the domain of physical interest, 4, is then analytic
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in the physical domain, and the construction of the global
magnetostatic solution is successful and complete. There are
several subtle mathematical issues involved in this extrapo-
lation whose pursuit we defer, to be taken up elsewhere. The
point of physical relevance is that well-behaved solutions can
be obtained in this manner; this will be shown by direct con-
struction.

Once a particular global solution 4 has been constructed by
the above method, new solutions can be obtained by its linear
superposition with a potential field A,mge taken over the entire
domain z > z,. This follows from the linearity of the equatlon
governing A. To ensure that the boundary d¢ remains in equi-
librium, the superposed potential field is required to have a line
of force coinciding with this circular boundary. The require-
ment identifies the potential field 4,,,,,. as generated by current
singularities in the form of image pairs with respect to the circle
of radius ry on which do lies.

2.4. The Cauchy Problem for the n = 3 Polytrope

For illustration, we choose the n = 3 polytrope as a case
soluble by analytic methods. We are interested in a potential
function 4, in o satisfying the Cauchy conditions (32) and (33)
on do. Change coordinates by the conformal (inversion) trans-
formation & + i = 1/(y + iz):

et

z
C—_y2+zz'

(34

The curves of constant & and { are two orthogonal families of
circles tangent at the origin to the z- and y-axes, respectively.
The circular boundary d¢ maps into the straight line { = —{,
with {, = 1/2r, in the £-{ plane. The region ¢ is transformed
into a region in the half-space { < —{,. The Cauchy condi-
tions (32) and (33) then transform into the conditions

27za 2na,

Apo 2 G+&, (35)
0A 2na
ot - 1 2 _p2 , 36
= e (36)
respectively, along the line { = —{,, where we have set n = 3

and used equation (25).

Now A, is also potential in the ¢-( space, by the nature of
conformal transformations. We therefore seek a potential func-
tion A, (¢, {) which satisfies equations (35) and (36). What
makes this problem analytically soluble is that the expressions
on the right-hand sides of these two equations are polynomials
in &. Selecting from the set of potential functions which are
polynomials in & and {, the desired solution is

Apor = 272_;11 (&2 =2+ 203
sEfleci - Seror|-acr o). 6
0

The two terms on the right-hand side enclosed by the braces
are both potential functions. The first term takes care of
boundary condition (35) since the second term vanishes at the
same boundary; the second term ensures that boundary condi-
tion (36) is satisfied. Since the Cauchy initial values are poly-

Vol. 429

nomials in &, we are assured by the Cauchy-Kowalevsky
Theorem (Courant & Hilbert 1963) that the extrapolation in
the neighborhood of do is unique. By the theory of analytic
continuation, the extrapolation is also unique in the entire
simply connected domain o. It should be noted that the solu-
tion given by equation (37) is everywhere analytic except at
¢ = o0, { = o0, which corresponds to the origin y =0,z = 0in
physical space. Hence, 4, is well-behaved at all points in o.

If we combine the terms 4., and 4, in equation (19) into
a single term, A =A + A_,, then

corona press pot>

2na,

1
Acorona = C_Cg— (C + CO)ZI:CZ - 3 C(C + 4C0):I ’ (38)

and the net stream function is given by
A= Acorcna + Aprom + Ashear s (39)

in the current-flowing region o¢; this solution matches smooth-
ly with continuous first derivatives across the boundary do to
the exterior potential stream function A4.,, defined by equation
(31). Note that the function A’ = 4 — A .. in 0 also matches
smoothly with continuous first derivatives across do to A.,,.
This implies that 4 .. and its first derivatives vanish on dg.
This is obvious in equation (38), taking note that { = —(,
on the circular boundary do. As pointed out above, we can
linearly superpose a free potential function 4;,,,. globally to
the above solution 4, provided that 4, .. contains do as a line
of force so that boundary conditions (32) and (33) are unaf-
fected. An infinite family of magnetostatic solutions can thus be
generated.

2.5. Pressure Discontinuity at 0c

If the pressure is not continuous at de, replace equation (29)
with

P=ay,+a;A inside 0o,

4
= b, outside Jo , (40)

where b, # a, is a constant. To ensure the continuity of the
total pressure across do, the magnetic field must be discontin-
uous at this surface so that the jump in magnetic pressure
compensates for the jump in plasma pressure, giving

B? a, — by
(5] -=5" @

where the brackets indicate a jump in value across do from the
inside. When b, = a,, this condition reduces to requiring B to
be continuous, or the derivatives of 4 to be continuous, across
0a. For this special case, boundary condition (41) is linear in A.
When b, # a,, boundary condition (41) is nonlinear in A and it
puts a restriction on the use of linear superposition of solutions
to generate new ones, as we shall see.

For the purpose of illustration, let us take A, alone,
given by equation (38), to be the stream function for a magnetic
field confined in ¢ and seek a potential field B;,,, with stream
function 4;,,,, outside of ¢ which satisfies boundary condition
(41). Since the derivatives of A,,.. vanish at do, where
A = 0, it follows that 4;,,,, = 0 and

2 _
<6Ajump> _ 87t(a03 bo) )
or z

along da, posing a Cauchy boundary value problem for 4;,,,
in the region outside of 6 in z > z,.

corona
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Transform the Cauchy boundary value problem from physi-
cal space into the £-¢ plane. The circle coincident with do has
the image { = —{,. The region outside of ¢ lies in { > —{, in
the image space. Writing A4;,,, as a function of ¢ and {, the
transformed boundary conditions are 4;,,, = 0 and

0A; 8n(ay — by) |2
= [—( Iz °)] @+ ey 43)
along { = —{,. The Cauchy boundary value problem cannot

be solved by the simple method of § 2.4. We employ a different
method based on the technique of analytic continuation, which
deals with the magnetic field instead of the stream function.
Once the magnetic field is known, the stream function if needed
can be obtained by a simple integration. Although the method
in § 2.4 is intuitively transparent, the method based on analytic
continuation has quite general application as will be obvious
from its use below.

It is convenient for later discussion to suppress the depen-
dence of the amplitude of 4;,,, on a, and b, by writing

Ajump = BO‘P s (44)
where B, is a constant which in the present problem is given by
B2 = 8n(a, — by) . 45)
We therefore have the potential field
lik 4 ik 4
B,..=Bo|l —p——2). 4
jump 0( 6z y ay z) ( 6)

In the £-( plane, ¥ defines a potential vector field

H¢ ) =H £+ HC, 47
where
o oV
Hg_-a?, H§=—a—é. (48)

The chain rule of differentiation and the Cauchy-Riemann
relations (see the Appendix) can be used to show that

: NSNS
Bjump,y — iBjump,z = Bo(H; — iH ;)(a +i 5) , (49)
giving the magnetic field generated by A;,,, in physical space.
The boundary condition 4;,,,, = 0 and equation (43) taken at
{ = —{, translate into

1
Hy=725 (3 +¢)"?, H =0, (50)
0

along { = —{,. The potential field H has the representation
H,—iH, = W(w), (51

where W is an analytic function of the complex variable
w = ¢ + i{. The problem thus becomes one of looking for an
analytic function in the complex plane w such that its value on
the line { = —{, is given by equation (50), a classical problem
of analytic continuation which has a unique solution. By
inspection of equations (50) and (51), it is obvious that the
solution to the problem is

1
H,—iH, = B {68+ [ +iC + L]} (52)
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Using equation (49), the potential field B;,,,, in physical space
can be constructed in the final step.

As shown in the Appendix, the stream function A;,,, =
B, ¥ can be integrated from the vector field H in the complex
plane of w, giving

Ajump = B, flgﬁ Im {[W(Cg + W2)]1/2 + C(z) sinh—l(g_)} ’

)
(53)

where Im denotes the imaginary part of a complex quantity. In
the construction of explicit solutions in the next section, we
shall use equations (49) and (52) to define the magnetic field
and numerically integrate for A;,,, in the y-z plane. This
approach is preferred over the analytical form for A;,,,, given
by equation (53) because it involves simpler rules to define the
branch cuts associated with complex functions in order to
obtain the correct magnetic topology.

For a given pressure discontinuity on do fixed by the con-
stants ao and b, in equation (41), the potential field B,
obtaining in the exterior of o matches the interior solution
A orona at do With a jump in magnetic pressure, while preserving
the continuity of the total pressure. By definition, a, > by, as is
evident from equation (45) defining the amplitude B, of Bj,,,,.
This also follows from the fact that Bj,,, is zero in ¢ and
increases discontinuously across do to nonzero values outside,
whereas the nonpotential field B,,,,,, introduces no discontin-
uity across 0. It is the excess magnetic pressure in the exterior
which requires an enhanced pressure in g, ie., a, > by, to
balance it.

3. EXPLICIT SOLUTIONS

To survey the rich variety of solutions this model provides,
we present a series of illustrative examples in order of increas-
ing complexity.

3.1. The A,orona Solution

The magnetic field generated by A = A_,,on. Shown in Figure
1 is composed of three bipolar fields with an X-type magnetic
neutral point on the z-axis. The solid and dashed curves of
constant A correspond to positive and negative values of A,
respectively. This magnetic field is symmetric about the z-axis
and is entirely confined (by the pressure and weight of the
n =3 polytropic atmosphere) within the circularly shaped
region ¢ marked by the line of force A = 0. The line 4 = 0 lies
on the circle {(y,z) = —{, of radius r, centered at y =0, z =
ro. The X-type neutral point is located at y =0, z = (2/3)r,
below the center of this circle, as can be verified by direct
calculation using the formula for A, .,.. Outside of o, the
atmosphere is unmagnetized and in plane-parallel hydrostatic
equilibrium. In the magnetic region, density is depleted relative
to that hydrostatic atmosphere at the same height everywhere,
except over the central bipolar field (below the X-type neutral
point where density is enhanced. Figure 2 shows the density
departure from the plane-parallel values at the same height.
Direct calculation shows that the line of force of the central
bipolar field, forming a boundary between density depletion
and enhancement, intersects the z-axis at z = (1/2)r,, a point
halfway between the origin and the center of the circle {(y, z)
= —{,. Because the magnetic field goes zero smoothly across
A = 0, no sharp density boundary is visible.

It is instructive to compare this magnetic field with the
potential field having the same boundary flux distribution at
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FiG. 1.—Magnetic field generated by 4 = 4,,,,,, in the domain z > z, =
0.4. Contours with positive and negative values of A are drawn with solid and
dashed lines, respectively, with arrows marking the direction of the field. The
field is confined in the circle { = —1/2r, with r, = 1 marked by 4 = 0.
Exterior to this circle, the field is everywhere zero.
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FiG. 2—Contours of constant density departure from a reference plane-
parallel hydrostatic density at the same height: Ap oc 4_,,,../z*. Contours of
positive and negative values of Ap are drawn with solid and dashed lines,
respectively. Outside of the circle 4 = 0, Ap is zero everywhere.

Vol. 429

the base z = z,, shown in Figure 3. This field is generated by
the stream function

1 * (Z — ZO)Acorona(y ” ZO) ’

Acorona,pot(y’ Z) - le (y _ y/)z + (Z _ zo)z dy (54)
and has a different field line connectivity as evidenced by the
location of the X-type neutral point on a different line of force.
The lines of force in Figures 1 and 3 are plotted for the same set
of values of the stream functions. The difference in magnetic
topology is readily seen by laying a transparent copy of one
over the other. The potential field in Figure 3 permeates all
parts of the atmosphere which is everywhere in plane-parallel
hydrostatic equilibrium. The magnetic field in Figure 1 is
clearly in a state of much higher energy since the magnetic field
is spatially confined. This kind of magnetostatic structure
arises in the course of solar activity because the magnetic field
emerges initially from below the corona.

The complete absence of magnetic field outside the region ¢
is artificial. We can superpose 4., With a potential field,
provided the latter preserves 4 = 0 as the same circular line of
force. One such potential field is the dipole potential field

Adipole ={+ CO . (55)

Figures 4-6 show the magnetic field obtained by the linear
SUPEIposition: A = Aqyeona + Gaipote Adipoter fOT three increasing
positive values of the amplitude ;.. The dipole potential
field extends beyond the boundary A = 0 so that the magnetic
field is no longer zero outside 4 = 0. If Qgipote > 0, the linear
superposition enhances the central bipolar field in Figure 1.
For a moderate value of a4, > 0, such as the case shown in
Figure 4, a shell-like region where 4 > 0 forms just inside of
A = 0. Since the density differential Ap oc A/z*, this shell-like

2-5llll|llll|ll|l|llll

20 -

1.5 A<O

10 | Lo

0.5 -
2,=0.4 -

o.0||||I||||I||||I||||
-1.0 -0.5 0.0 0.5 1.0

F1G. 3.—Potential magnetic field in z > z, = 0.4 with the same boundary
values of 4 on z = z, as the nonpotential field shown in Fig. 1. Contours are
drawn for those same A-values found in Fig. 1. Note that the contour 4 = 0
runs along z = z, because this potential field fills all space in z > z,.
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FiG. 4—Magnetic field A = 4, + 0.4

region shows a density enhancement above a reference back-
ground hydrostatic atmosphere. Enclosed by this shell is the
cavity of density depletion seen previously in Figure 1 but now
reduced in size. The original density enhancement associated
with the central bipolar field seen in Figure 1 has at the same
time grown in geometric size in Figure 4. Here and for other
examples to follow, we omit separate displays of the contours
of Ap since these can be inferred readily from the contours of 4,
given the linear relationship between these two quantities.

As the amplitude ag;,,. increases, the above two regions of
positive A increase their geometric sizes parametrically, to
eventually merge, as shown in Figure 5, splitting the density
depletion (A4 < 0) region into two. For a sufficiently large
Agipote> SUCh as the case in Figure 6, the central bipolar field
dominates completely and density is enhanced everywhere in
a.
If ag;p0e <0, the added dipole potential field reduces the
central f)ipolar field in Figure 1. This has the effect of reducing
the central density enhancement associated with this bipolar
field and enlarging the density depletion region. We omit pre-
senting an explicit example of this less interesting case.

To understand the above density distributions, note from
equations (4) and (21) that the current density in the atmo-
sphere is given by

VxB=4’:§".e, (56)

where we have set n = 3 and set all stream functions on the
right-hand side in equation (19) to zero except for the contribu-
tion A.y.na. The current density is everywhere positive and in
the x-direction. Consider force balance in terms of a hydro-
static relation between pressure and density along, and the
Lorentz force everywhere directed perpendicular to, the lines of
force; see equation (9). Given the sign of the magnetic field
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FiG. 5—Magnetic field A = A,,,,,, + 0.8(

contributed by 4 = A.,0n. Shown in Figure 1, the Lorentz
force is directed out of the region ¢ except in the central bipolar
field. The outward Lorentz force is balanced principally by an
inwardly directed pressure gradient in the density depletion
region. In the density enhancement region of the central
bipolar field, the pressure gradient is directed outward to

25T T T T T T T T T T T T T T T T T T
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- 1
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-1.0 -0.5 0.0 0.5 1.0

Fi6. 6.—Magneticfield 4 = A y0, + ¢
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balance the inward, confining Lorentz force. The superposition
with the potential dipole field does not change the current
density. On the other hand, the Lorentz force is modified
because of the addition of a potential field. Depending on
whether the regions of outward and inward Lorentz forces are
enlarged or contracted, the respective regions of density
enhancement and depletion are similarly changed, as shown in
Figures 4, 5, and 6.

3.2. Sheared Magnetic Fields

Consider now the superposition: 4 = A q,ona + Gshear Ashears
Ggneqr DeiNg a constant amplitude, which introduces currents
aligned with the magnetic field. This superposition produces a
component of current density in the x-direction, uniformly dis-
tributed over o, in addition to that given by equation (56):

(v x B), = 4na,

1 2.

3 + 7 A% (57)
see equations (4), (20), and (21). The net field is sheared with a
nonvanishing component in the x-direction in the region o, a
point to be borne in mind when viewing lines of force projected
on the y-z plane. This component of the field has the effect of
an isotropic magnetic pressure; see Paper L. This pressure
force provides a means, in addition to that derived from the
plasma pressure, to balance the Lorents force in the y-z plane.
The relationship between the Lorentz force and the distribu-
tion of the plasma density becomes more complicated than
that found in the unsheared magnetic fields of § 3.1.

Before we proceed, a warning is needed. The stream function
A can take on negative values in ¢ rendering the x-component
of the field defined by equation (16) imaginary. This can be
remedied by replacing equation (16) by

Q=44 + A", (58)

where the constant A, is chosen such that the square root is
real in ¢. The solution Ag,,, continues to satisfy the governing
equation (Paper L). However, this would present the com-
plication that Q jumps discontinuously from a finite value to
zero upon crossing the boundary 4 = 0. Force balance at this
boundary requires the continuity of the magnetic pressure
across it. Since Q = 14¢/%, a constant on the boundary, and
both Agnear,exe aNd Agye,, give uniform tangential fields along
A =0, a suitable choice of the amplitude of Ay, e €NSUTES
continuity of magnetic pressure across 4 = 0. In the following,
we bear in mind that this extension of the model has been
made wherever A takes on negative values in .

The magnetic field generated by Ag,,, alone is a twisted rope
of magnetic flux running parallel to the x-axis. Where it domi-
nates, it produces closed, projected magnetic loops in the y-z
plane. Figure 7 shows an example of the superposition of
Acorona a0d Ag,, With the circulation of the magnetic flux rope
in the same sense as the central bipolar field in Figure 1. A
detached set of magnetic loops forms in the upper region of o,
indicating the presence of a magnetic flux rope. This flux rope
is a region of density enhancement (4 > 0). The pressure of the
enhanced plasma and the isotropic pressure of the x-
component of B are both confined by the closed magnetic
loops (in the y-z plane) of the rope. On the other hand, the
weight of the enhanced plasma is supported partially by the
Lorentz force associated with the compression on the magnetic
field below. The magnetic field extends outside the region o,
contributed in that part of the domain by Agpear, pot-

2-5II|I|IIIl|llll|IIII
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FiG. 7—Magnetic field A = A ;000 + Agpear- The field in the current-
flowing region bounded by 4 = 0is sheared with B_ # 0.

Figure 8 shows the configuration for the case where the same
Acorona 18 superposed with Ag,.,, of the opposite sign. For an
amplitude such that the latter dominates in the upper region of
o, the flux rope of the opposite twist forms a region of density
depletion. The inward plasma pressure force together with the

ST s B B B B s s e e

FiG. 8—Magnetic field A = Ay, . — 7Agpear- The field in the current-
flowing region bounded by 4 = 0is sheared with B, # 0.
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Lorentz force associated with the closed magnetic loops
confine the isotropic pressure of the x-component of B. This
depleted region is buoyant in the stratified atmosphere and is
seen in the equilibrium state to be straining upward against the
confining magnetic lines of force anchored to the base z = z,.
These two basic types of magnetostatic configurations can
be further modified by superposing them with the dipole
potential field Agipqc Which preserves the special line of force
A = 0. We leave the reader to explore these possibilities. The
addition of A, changes the distribution of the Lorentz force
in the y-z plane by changing the magnetic field distribution
without changing the current density in the x-direction.

3.3. Pressure Discontinuity at 0o

It is instructive to first visualize the vector field H in the &-{
plane given by equation (52) and shown in Figure 9. This field
is obtained by writing equation (52) in the form

1
He — iH = 7 (€ + iVAE 4+ iC + 209112, (59)

taking the respective branch cuts of the two square roots from
{=0to oo and from { = —2{, to— oo, along the {-axis, as
indicated in Figure 9. The field H is tangential along the cuts
and changes sign abruptly across it. These cuts may be inter-
preted to be electric current sheets in the £-( plane. These
currents sheets as sources of the field H are images relative to
the line { = —{,. Hence, H is symmetric about { = —{, and is
tangential along this line. It is this property which is preserved
by the conformal transformation (34) of H into B;,,, in physi-
cal space. In the transformation, the line { = —{, becomes the
circular boundary do coinciding with the line of force A = 0 of
the physical magnetic field. The cuts 0<{ < oo and
—2¢, > { > — o in the £-{ plane map into two current sheets
on the z-axis, respectively running from z =0 to —oco and
z = 0 to ry, where {, = 1/2r, and r, is the radius of the circle
on which 0o lies. The latter two current sheets form an image

g=0-

€= 't..o“

2
3\

Fi1G. 9—Flow lines of the vector field H, — iH, in the ¢-{ plane given by
equation (59). The thick lines on the (-axis, extending from { = 0 to oo, and
from { = —2{, to — oo, are the branch cuts described in the text, across which
a tangential H reverses sign abruptly.
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pair with respect to the circle {(y, z) = —{,. It is this geometry
of the current distribution which produces a line of force coin-
ciding with {(y, z) = —{,. For the same reason, the field B,
given by equation (26) has a circular line of force 4,,,,,, = 0.

Figure 10 shows the lines of force of B;,,,, taken over all
space in z > z,. Only the part of the second current sheet,
extending from z = 0 to z = r,, located in z > z, is shown. It is
interesting to note that this current sheet is not threaded by the
magnetic field, so that if it is admitted in the model, it is force-
free.

The essence of the construction in § 2.5 is that the magneto-
static solution described in Figures 1 and 2 can be combined
with B;,,,, to describe a global atmosphere. Inside do, the mag-
netic field and density are as given in Figures 1 and 2. Outside
0o, the atmosphere is permeated by the magnetic field By,
and is in hydrostatic equilibrium with a plane-parallel pressure

b

3 (60)

The part of the magnetic field B, inside do is irrelevant in
this construction. In this global solution, ds is in force equi-
librium with a continuity of total pressure across it as
described by equation (41), with a, > b,. Hence, there is a
discontinuous increase in the pressure and density upon cross-
ing do from the exterior. Inside 0o, the density shows both
enhancement and depletion as the result of the electric currents
associated with A_,,,,.., as displayed in Figure 2.

This particular solution can be generalized. Redefine the
potential field B;,,, to be nonzero everywhere in z > z,,
setting

Ajump = B;, ¥ inside do ,

. 61
=B, ¥ outside do, (61)
where B, and B,,, are constant amplitudes. The magnetic field
B;,mp alone describes a simple atmosphere. Since B, is

potential everywhere except at do, take the atmosphere to have

80T T T 1T T T T 1 T T T [ T T 7T
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FiG. 10.—Lines of force of Bj,,,, taken over the y-z plane in z > z,. The line
of force A = 0 corresponds to the circle { = —1/2r, of radius r, centered at

y =0, z = ry; here r, = 1. This magnetic field is potential everywhere except
on the z-axis in the interval r, > z > z, where Bj,,, is tangential and has
opposite signs on the opposite sides of this line segment.
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the plane-parallel pressures

p=—3 inside do,
(62
=— outside do .

The only currents in the atmosphere are in the vertical current
sheet extending from the base z =z, to z = r, on the z-axis,
and in the boundary do. As we have pointed out, the former is
force-free. Along do, the pressure jump across it arising from
ao # b, in equation (62) can be balanced by the jump in the
magnetic pressure. Using equation (41), we obtain

1
g (Bgut - Blzn) =ap — bO > (63)

relating the two amplitudes B, and B,,, to the pressure discon-
tinuity. Now the region ¢ can have high (a, > b,) or low (g, <
bo) density relative to the exterior, depending on whether it
contains an enhanced or reduced magnetic field relative to the
exterior.

The nonlinearity of the jump condition (41) restricts severely
the linear superposition of solutions to generate new ones. For
example, the superposition of A;,,, with a global potential
stream function 4;,,,,. to preserve do as a line of force does not
satisfy the jump condition (41), a situation quite in contrast to
the case where pressure is continuous across da. Linear super-
position with A4;,,, is possible only with a stream function
whose magnetic field vanishes on d¢ and thus does not contrib-
ute to equation (41). The nonpotential field A4.,,,,, satisfies this
requirement. Figure 11 shows a superposition of Ajymp given
by equation (61) and A,,... The presence of the field due to
A orona I 0 gives rise to two features: First, the plasma pressure
in ¢ is described by equation (41) with a, # 0 instead of equa-
tion (62); the electric currents contributed by A_,,,,, gives rise
to departure from plane-parallel distribution. Second, the ver-
tical current sheet of B, is now threaded by the magnetic
field contributed by Ao,

In Figure 11, we have a superposition in which the Lorentz
force on the current sheet is directed upward in the upper part
of it. This force can be balanced by the gravitational force
according to equation (7) for a suitable mass distribution.
Figure 11 as a crude model has several qualitative features
resembling the three-part structure of the coronal helmet.
Setting B,,, > Bj,, and by equation (63), a, > b,, we find a
discontinuous increase in density across do from the outside,
which can be identified with the high-density helmet. The
density shows depletion inside do (4 < 0 within ¢ in Fig. 11);
this may be identified with the prominence cavity. Finally, the
current sheet suspended by a discrete Lorentz force may be
identified with the prominence. There are limitations, of
course. Most serious is that the boundary d¢ is unstable for
ao > by, a point we will address in § 3.4. In addition, the
density depletion region in ¢ is not, contrary to observation,
separated from the high-density region by a sharp boundary,
and the prominence extends to the lower boundary z = z,
rather than being wholly suspended in the atmosphere. In fact,
as shown in Figure 11, in the lower part of the whole current
sheet extending from z = 0 to z = (2/3)r,, the Lorentz force is
acting downward. This part of the current sheet is not physi-
cally admissible since gravity is the only means of balancing
the Lorentz force on the sheet. For this reason, we set the
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FIG. 11.—Magnetic field generated by a linear superposition of 4 with

corona
Ajump, the latter given by equation (61). Exterior to the circular line of force

A =0, the magnetic field is potential. Across 4 = 0 from the exterior, the
magnetic intensity is reduced discontinuous with a corresponding increase of
pressure to maintain continuity of the total pressure. The negative values of A
indicated by dashed contours inside 4 =0 implies a density reduction
Ap cc A/z* relative to a plane-parallel atmosphere compatible with the pres-
sure jump along 4 = 0. The thick vertical line along the z-axis extending from
the base of the atmosphere represents a prominence sheet suspended by the
magnetic field threading through the sheet. The base z = z, has been set at
2o = (2/3)ro withry = 1.

boundary z =z, =(2/3)r, at a level which excludes the
unphysical lower portion of the current sheet. In the next paper
of the series dealing with prominences, models will be present-
ed with physically more reasonable prominence sheets, namely,
those wholly suspended in the atmosphere.

3.4. Stability of the Discontinuity at 0o

The availability of explicit, equilibrium solutions presents an
opportunity to study their mechanical stability to small ampli-
tude perturbations. Although stability analysis lies outside the
scope of our paper, one aspect of it is interesting and relatively
simple to demonstrate, namely, the stability or instability of
the discontinuity at do.

Consider the magnetostatic atmosphere with the magnetic
field B;,,,, generated by the stream function given by equation
(61). Although the total pressure is continuous across do, its
derivative is not. The jump of the total pressure force deter-
mines the stability of do. The energy principle states that this
boundary is stable if and only if the change in the potential
energy of the system

BZ
SE = j [V(p + —) . f] n?ds 64)
00 8n 00

is positive definite for all infinitesimal displacement 7 in the
direction 7 normal to the boundary (Bernstein et al. 1958;
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Spitzer 1967). In equation (64), ds is the line element on do and
the square brackets indicate the jump of the gradient upon
crossing do in the positive direction of 7. Direct evaluation
gives

(bo — ao)
&3
This shows that the boundary do is stable if and only if the
region ¢ is depleted of density relative to the exterior with
by > a,. Hence, as a model of the helmet which has a high
density relative to its exterior, the magnetostatic state given by
equation (61) is physically not admissible because the bound-
ary do is unstable. Conversely, as a model of the prominence
cavity embedded in the high density of the helmet, this state is

admissible by reason of stability.

This stability result is a particular example of a general
result due to Hu (1988). In that work, a general class of magne-
tostatic equilibrium was considered, obtained by modifying the
magnetic field intensity of a given potential field B, without
changing the field geometry, and introducing pressure gra-
dients and a density distribution to ensure a balance among
the Lorentz, pressure, and gravitational forces. The equi-
librium atmosphere associated with the magnetic field given by
equation (61) is, in fact, a member of this class of equilibria. Hu
showed in generality that the stability of each of these equi-
libria depends crucially on the gradients V,(| B|) and V,(| B, |)
perpendicular to gravity: stability obtains if and only if the
specific gradient of the modified field intensity V (| B|)/| B| is of
the same sign and steeper than the corresponding gradient for
the unmodified potential field. In our particular example, this
specific gradient is made more steep at do than in the potential
field (obtaining from equation (61) with B, = B,,,, i.e., with no
discontinuity at dg) when by > a,.

The principal stabilizing influence of coronal structures is
the anchoring of the magnetic field in the dense photosphere;
rigid anchoring is assumed in the criterion involving JE given
by equation (64) (Low 1990). Under this influence, the stability
of the surface do is determined by a competition between the
forces arising from magnetic curvature and density stratifi-
cation (Low 1985; Hu 1988). If b, > a,, the case of ¢ being a
density cavity, the relatively high magnetic field in ¢ is convex
to the high-density exterior. The magnetic curvature force
associated with do is stabilizing everywhere on do. Along the
upper half of the circular boundary do, dense plasma sits above
the less dense plasma inside ¢. This part of the boundary is
Rayleigh-Taylor unstable but is dominated by the stabilizing
effect of the magnetic curvature force. Along the lower half of
da, the density stratification is stable, and it enhances the sta-
bility of this part of the boundary. Hence the entire boundary
0o is stable with 6E > O for all linear perturbation 7.

If a, > by, the case in which the density in o exceeds that of
the exterior, the effects of density stratification and magnetic
curvature reverse their roles. The magnetic curvature force is
everywhere destabilizing along do. The upper half of do is
Rayleigh-Taylor stable but not sufficiently so as to override the
destabilising magnetic curvature force. On the lower half of do,
both density stratification and magnetic curvature are destabi-
lizing. Hence, the boundary do is unstable.

OE = j (& +°CE + mds . (65)
00

4. SUMMARY AND CONCLUSION

The magnetostatic solutions presented are not intended to
model coronal structures in realistic details. They are theoreti-
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cal examples for illustrating physical properties in basic forms,
in terms of which insights might be gained for the understand-
ing of realistic coronal objects. Thus the explicit solutions
shown in Figures 1-11 illustrate how density enhancements
and depletions may form as the result of the complex interplay
among the Lorentz, pressure, and gravitational forces.

The equation of force balance is highly nonlinear, and this is
a major obstacle to the construction of explicit models for
theoretical study. Two steps led to the rich collection of solu-
tions in this paper. The first is to render the magnetostatic
equation linear and remove undesirable physical features
obtaining in the far region by localizing the current density to a
region bounded by a magnetic flux surface. External to this
local region is a plane-parallel at atmosphere with a potential
magnetic field. This in general leads to a free boundary
problem involving the bounding magnetic flux surface as an
unknown of the problem. The second step circumvents this
formidable problem by a self-consistent construction of both
interior and exterior solutions matched across a prescribed
shape of the magnetic surface. In this second step, the problem
reduces to solving for a potential stream function satisfying
Cauchy-type boundary conditions. This is a well-known ill-
posed boundary value problem in the sense that, although the
existence and uniqueness of solution may be assured in most
circumstances, the solution does not depend continuously on
the Cauchy boundary data (Courant & Hilbert 1963). This
property renders the Cauchy boundary value problem difficult
to treat numerically because small changes due to numerical
truncation necessarily imply unbounded changes in the solu-
tion obtained. It is interesting that the Cauchy boundary value
problem in this paper can be solved exactly. Two methods
were used. The one leading to the solution given by equation
(38) is intuitively transparent. The other leading to the solution
given by equations (49) and (52) is more important because it
can be applied to quite general boundary value problems of
this type.

The solutions we constructed separate into two classes,
those associated with continuous pressures and magnetic fields
at the boundary between the current-carrying region and the
external potential region, and those with discontinuity in pres-
sures and magnetic fields at this boundary. The former pre-
serves linearity in the solutions so that the principle of linear
superposition serves as a powerful tool to generate new solu-
tions, as long as the boundary of the current-carrying region is
invariant in the superposition. As Figures 1-7 show, this class
of solutions exhibits a rich variety of magnetostatic configu-
rations. In the next paper of this series, this class of solutions
will be put to further use in the study of prominence support.
The second class of solutions involving discontinuities in pres-
sure and magnetic field is more restricted in variety. This is due
to the fact that these discontinuities must ensure that the total
pressure is continuous across the boundary of the current-
carrying region. This boundary condition is quadratic in the
magnetic field and severely limits the independent solutions
available for linear superposition.

Although we are not able to study the linear hydromagnetic
stability of our equilibrium solutions in a systematic manner—
a separate undertaking in its own right (e.g., DeBryne & Hood
1989; Hood 1990; Zweibel 1981, 1982), the simple stability
properties of sharp magnetic boundaries illustrate some impor-
tant issues. Our result is a particular case of a general result
due to Hu (1988). A high-density plasma confined by magnetic
fields concave to it without shear is unstable by the interchange
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mode associated with the magnetic curvature. Conversely, a
curved magnetic field intruding into a high-density plasma is
stable to the interchange mode. These are classical results in
laboratory plasma physics. In the solar corona, the stabilizing
or destabilizing influence of the magnetic curvature force inter-
plays with the effect of density stratification. As the example in
Figure 9 shows, this interplay leads to absolute stability of the
sharp boundary do in the case where ¢ is a low-density cavity,
and instability in the case of o being a density enhancement.

The former case is especially interesting, Along the top half
of the circular boundary do, the destabilizing top-heavy strati-
fication is completely compensated for by the stabilizing effect
of the magnetic curvature force. Along the lower half of dg,
both stratification and magnetic curvature are stabilizing. Such
a favorable interplay may underlie the observed stability of the
cavity at the base of the coronal helmet.

The instability of do in the other case rules it out as a pos-
sible model for the external boundary of a coronal density

Vol. 429

enhancement like the helmet structure. It is conceivable that a
density enhancement with a shape of do different from that in
our particular solution could be stable. In such a structure, the
top portion of do would have stable stratification, with high
density separated by do from low density above. This stabili-
zing feature must dominate to compensate for the adverse
magnetic curvature force. It would be interesting to construct
an explicit example.

We cannot understand the structure of the coronal helmet
without also considering the magnetic structure associated
with the quiescent prominence which is often found at the base
of the central cavity. This concern is taken up in the next paper
of the series.

This work was performed during the sabbatical visit of one
of us (J. R. H.) to the High Altitude Observatory. We thank
Ellen Zweibel for helpful comments.

APPENDIX

The equations V - B=0and V x B = 0 for a potential field B = B, + B,z reduce to

0B

¥y Pz 1
ay+ 0, (A1)
@__y=0, (A2)
dy

which are the Cauchy-Riemann relations associated with an analytic function W of complex variable w = y + iz related to B by

B, —iB, = W(w) . (A3)

This representation of potential fields found in classical texts like Lamb (1945) and Coulson (1958) has been used extensively in
recent works (e.g., Priest & Raadu 1975; Hu & Low 1982; Malherbe & Priest 1983). If ¢ and A are the potential and stream
functions of B, we have

o, o
T oz 6yz
_9 . 9,
—ayy+azz. (Ad)

Equating the components, we obtain the Cauchy-Riemann relations

o _ 24
dy oz’
0¢ 0A
. _ %z AS
% 3y’ (AS)
showing that ¢ + i4 is an analytic function of w. Using equations (A3), (A4), and (AS), it can be shown that
b+id = f Wwho (a6)

Equation (53) is obtained by applying equation (A6) to the potential field H given by equations (48) and (52) in the complex plane of
&+
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