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ABSTRACT 
This paper presents a large class of analytic solutions describing partially open magnetic fields in static 

equilibrium outside a central object, which may be taken to be a planet or a star. The problem for a potential 
magnetic field is first treated in axisymmetric geometry, with an equatorial, stress-free electric current sheet 
whose presence results in part of the magnetic flux opening to infinity. The solutions can be linearly super- 
posed to construct idealized models of the solar coronal magnetic field in a partially open configuration. 
These solutions are further developed to allow for stresses in the current sheet and three-dimensionality, in 
that order of complexity. The stresses can be balanced in equilibrium by introducing gravitational and cen- 
trifugal forces acting on dense matter confined in the electric current sheet. Explicit solutions are presented to 
illustrate magnetic topologies of magnetospheres having rotating and nonrotating magnetodisks. A simple 
physical illustration is given to estimate the total mass in the Jovian magnetodisk from the observed macro- 
scopic parameters of the disk electric current. 
Subject headings: hydromagnetics — planets: Jupiter — planets: magnetospheres — stars: magnetic 

I. INTRODUCTION 

For a variety of astrophysical circumstances, inhomoge- 
neous structures in a magnetic atmosphere may be approx- 
imated by electric current sheets. This approximation is useful 
if we are interested in the global configuration of the embed- 
ding atmosphere rather than the detailed internal structures of 
the inhomogeneities. The solar quiescent prominence, the 
heliospheric equatorial current sheet, and the magnetodisks in 
the Jovian magnetosphere and around some stars are some 
examples of objects that have been conveniently modeled in 
terms of electric current sheets (Kippenhahn and Schlüter 
1957; Hundhausen 1977; Vasyliunas 1979, 1983; Aly 1986). 
Current sheet models are difficult to construct because they 
pose free boundary problems. In this paper, we present a class 
of problems whose solutions can be written in closed analytic 
form. These solutions can be linearly superposed to generate a 
rich variety of magnetic configurations, a convenience similar 
to that encountered with potential magnetic fields. 

Consider the boundary value problem for a potential mag- 
netic field in the infinite space outside a unit sphere. In this 
problem, we seek a potential magnetic field B in the infinite 
space r > 1, where 

V x Æ = 0 , (1) 

subject to a prescribed normal field component at r = 1, and 
we demand that B vanishes at infinity. As is well known, this 
problem reduces to a boundary value problem of the 
Neumann type in classical potential theory. In the absence of 
magnetic monopoles, the prescribed normal field component 
r = 1 must have zero net magnetic flux, and the solution gives 
a magnetic field which has a closed geometry and vanishes as 
fast as 1/r3 at large r. In other words, the magnetic field far 
away is predominantly that of a dipole. Let us consider a 
modified version of the above problem. We allow electric 

1 The National Center for Atmospheric Research is sponsored by the 
National Science Foundation. 

current sheets to exist in the infinite region r > 1 and let the 
magnetic field be potential everywhere except on the current 
sheets. We further demand that the current sheets be stress-free 
and their presence results in a prescribed fraction of the mag- 
netic flux opening to infinity. The classical Neumann problem 
has to be modified to demand that B vanishes at infinity like 
1/r2. This asymptotic form follows from Maxwell’s equation 
V • Æ = 0 applied to an open radial field. The shape and extent 
of the electric current sheet needed to open up the prescribed 
amount of magnetic flux becomes a free surface to be deter- 
mined together with the magnetic field. This is a difficult free 
boundary problem which arises naturally in the modeling of 
large-scale magnetic fields of the solar corona in terms of 
potential fields (e.g., Altschuler and Newkirk 1969; Schatten, 
Wilcox, and Ness 1969; Pneuman and Kopp 1971; Hundhau- 
sen 1977; Yeh and Pneuman 1977; Levine et al 1977). The 
solar corona is in a state of expansion, with the magnetic field 
in the outer reaches forced into an open configuration (Parker 
1963). Low in the corona, the expansion is negligible, and 
approximate static equilibrium obtains. Higher up, the corona 
expands in a hydromagnetic flow. A very crude model for the 
coronal magnetic field in such an environment is to take it to 
be potential. To allow for the effect of the solar wind without 
directly treating the hydromagnetic flow, we can prescribe a 
fraction of the magnetic flux to be radial and open in the 
presence of current sheets. In § II, we construct a general class 
of solutions for the case of an axisymmetric system with the 
current sheet located in the equator. In a further development 
given in § III, we allow for stresses in the current sheet and 
variations in three dimensions. These stresses may be balanced 
in equilibrium against gravitational and centrifugal forces 
acting on dense matter in the electric current sheet. We shall 
present a variety of explicit solutions illustrating idealized 
models of partially open stellar magnetospheres embedding 
equatorial disks (e.g., Ghosh and Lamb 1978,1979; Mestel and 
Ray 1985; Gleeson and Axford 1976; Hill and Carbary 1978; 
Connerney, Acuña and Ness 1981). We conclude the paper in 
§ IV with a discussion of the results. 
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II. PARTIALLY OPEN POTENTIAL MAGNETIC FIELDS 

Let us introduce the potential 3>, where 

£ = V<D. (2) 

Equation (1) is satisfied automatically, and the divergence-free 
condition on B becomes the Laplace equation 

V2(D = 0 . (3) 

We use spherical coordinates r, 6, </> and seek solutions of 
equation (3) such that <I> satisfies the boundary condition 

r=l, 

d<D 
= m <t>), (4) 

and vanishes at infinity with the asymptotic form 

r—► oo , 

0-> PoiO, 0) 
(5) 

where the normal field distribution F(0, 0) is given and P0 is 
piecewise constant over the domain 0 < 0 <n, 0 < 0 < 2^. 
The form of P0 determines a prescribed amount of the mag- 
netic flux opening to infinity in a given zone on the sphere at 
infinity. The distribution F is assumed to have zero net flux 
over the unit sphere. The use of boundary condition (5) instead 
of a simple statement that O vanishes at infinity requires the 
presence of electric current sheets in r > 1. To keep the 
problem simple, we demand that only stress-free electric 
current sheets are admissible. Such a magnetic field exerts no 
force on the plasma medium and is a special case of a force-free 
magnetic field. In § III, we relax this constraint to consider 
stressed current sheets and account for their interaction with 
the plasma medium. In the present consideration, the task is to 
solve for the potential <I> in equations (3)-(5), together with the 
self-consistent stress-free electric current sheets. 

The above problem is simple to solve if the desired magnetic 
field is everywhere open in r > 1. In that case, the construction 
proceeds by first dividing the boundary at r = 1 into regions of 
positive and negative polarities according to the signs of the 
prescribed normal field F(Q, 0). Take all the negative polarity 
regions and reverse the sign of F. Let us call these regions E _. 
With the modified boundary condition at r = 1, now solve the 
Laplace equation for a smooth d) which vanishes at infinity. 
This is readily done by classical techniques. Since the bound- 
ary r = 1 with the modified boundary condition has positive 
magnetic flux everywhere, the solution gives a magnetic field 
with all lines of force extending from the boundary r = 1 to 
infinity. Now reverse the directions of just those lines of force 
connected to the boundary r = 1 in the regions X _. This leads 
to a magnetic field which is potential everywhere except at the 
surfaces made of magnetic lines of force in r > 1 which connect 
to the boundary r = 1 just along the boundaries of Z_. The 
reversals of the magnetic field at these magnetic surfaces are 
associated with sheet currents. The magnetic field does not 
penetrate these current sheets, and the method of construction 
ensures that the magnetic pressure is continuous across these 
current sheets. The current sheets are therefore stress-free. The 
magnetic field so constructed is then the solution we seek to 
equations (3), (4), and (5) for the special case of a fully open 
magnetic configuration. If the magnetic field is only partially 

open, the above construction fails and the problem is not trac- 
table in general. In the following, we present a large class of 
particular solutions for the partially open magnetic configu- 
ration in a system which is symmetric about an axis and is also 
symmetric about the equatorial plane defined relative to its 
axis of symmetry. Such a system admits magnetic fields with 
the simplest form of the current sheet, namely, one which is flat 
and lying in the equator. Let us introduce some mathematical 
preliminaries before proceeding to obtain these solutions by 
direct construction. 

As we deal with axisymmetric magnetic fields in the rest of 
this section, it is convenient to use the following representation 
ofB: 

1 /I dA^ _dA A 
r sin d\r 39 V dr ) ’ (6) 

where A is a scalar function and we consider the case of a 
strictly poloidal field. The magnetic field B given by equation 
(6) is automatically divergence-free. The lines of force are given 
by curves of constant values of A, and we refer to A as the 
stream function. The latter property facilitates the plotting of 
lines of force for graphical presentation. Applying equation (1) 
for a potential magnetic field, we obtain 

d2A sin 9 d f 1 cL4\ 

which is the equivalent of the potential equation (3); here we 
deal with the stream function A instead of the potential func- 
tion O. The well-known spherical harmonic potential functions 

wn = r~n~1Pn(cose), (8) 

satisfying equation (3), give potential magnetic fields which are 
also generated by the corresponding stream-function solutions 
to equation (7) : 

wn = - r-"Pl (cos 0) (9) 
n 

(see, e.g., Batchelor 1970), where n is an integer and Pn and Pi 
are standard Legendre polynomials and associated Legendre 
functions respectively. 

Consider the oblate spheroidal coordinates rj, and 0, 
where 

x = r sin 9 cos 0 = a(l + <^2)1/2(1 — rç2)1/2 cos 0 , (10) 

y = r sin 0 sin 0 = a(l + ^2)1/2(1 — rj2)112 sin0 , (11) 

z = r cos 9 = aÇrj . (12) 

In equations (10), (11), and (12), we relate the spherical and 
spheroidal coordinates through the Cartesian coordinates x, y, 
and z, and the constant a is the radial distance of the common 
foci of the confocal elliptic and hyperbolic surfaces of revol- 
ution generated by the constant values of £ and r¡ respectively 
(Morse and Feshbach 1953). It is useful to bear in mind that 
these surfaces of revolution are generated by Ç and rj in the 
ranges 0 < ^ < oo and (see Appendix A). In spher- 
oidal coordinates, equation (7) for the stream function of a 
potential magnetic field takes the form 

(l + a0 + (l-^)0 = O) (13) 
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with the following axisymmetric, separable, solutions 

= (1 + ai/2(i - , (14) 

where P* and Ql are, respectively, associated Legendre func- 
tions of the first and second kinds with integer index n, and 
i = ( —1)1/2. Of special interest are the odd-rc solutions describ- 
ing fields which are symmetric about the equator. We hence- 
forth take n to be odd unless stated otherwise. The solutions An 
are singular on the disk of radius a lying in the equator cen- 
tered at the origin. This disk is just the degenerate elliptic 
surface of revolution on which ^ = 0. Electric currents flow in 
the azimuthal direction in this disk and give rise to the oblately 
shaped potential magnetic field outside the disk. The singu- 
larity distributed over a disk corresponds to the point singu- 
larities, located at the origin, of the more familiar spherical 
harmonic solutions Wn given by equation (9). In both cases, we 
may interpret the potential fields to be due to surface electric 
currents represented by the associated singularities. 

In the axisymmetric system which is symmetric about the 
equator, one possibility for a partially open magnetic field 
outside a unit sphere is to have an equatorial electric current 
sheet that extends to infinity with an inner radius larger than 
unity. Let us identify the parameter a with this inner radius. A 
large class of solutions describing such a magnetic field can be 
constructed from the odd-n functions An as follows. We first 
invoke a well-known theorem which states that, in spherical 
coordinates, if <I>(r, 0, 0) is a solution of the Laplace equation, 
then so is the function 

0)'(r, e,(¡)) = — <D| (15) 

where b is an arbitrary positive constant. This is the Kelvin 
transformation that generates one potential function from 
another by the inversion transformation with respect to the 
sphere of radius b centered at the origin; e.g., Kellogg (1929). In 
terms of the stream function for an axisymmetric magnetic 
field, the Kelvin transformation takes the form 

A'(r, 6) = rA(j , 0) , (16) 

with the statement that if A satisfies equation (7), so does A'. 
Let us express Ç and rj in terms of spherical coordinates, 

and define the functions 

which are obtained from ^ and rj respectively, by inversion with 
respect to a sphere of radius a centered at the origin. As func- 
tions of the spherical coordinates, rj, u, and v have singular 
properties at the equatorial plane 6 = tt/2. We shall have 
occasion to use the first derivatives of these functions evaluated 
at the equator, and these derivatives are presented in Appendix 

A. Identifying the constant b with a and applying the Kelvin 
transformation to An, we obtain the following stream func- 
tions: 

S„ = r(l + m2)1/2(1 - t>2)1/2Q»P„» . (21) 

The inversion transformation takes the disk electric current 
sheet, with radius a, of the stream function An into an infinite 
current sheet, associated with Sn, that lies in the equator with a 
circular hole of radius a centered at the origin. Figure 1 dis- 
plays the magnetic lines of force for the simple dipolar case of 
A! and Sv The equatorial current sheets associated with Sn are 
not stress-free, as is evident in the particular example in Figure 
1 showing kinks in the lines of force at the current sheet. The 
normal component of the field at the current sheet and the 
azimuthal electric current give rise to a Lorentz force directed 
in the radial direction. To render it stress-free, the following 
two things need to be done. 

We first remove the magnetic flux threading across the equa- 
torial current sheet by introducing an additional magnetic flux 
due to suitable magnetic sources located at the origin. To that 
end, let us evaluate the normal field component along r > a at 
the equator, obtaining 

(Be) r> a,6 = nl2 
a2 dQJiu) 
r3 L du J„ = 0 

[dPj 
I dv 

— - n(n + 1) - Pn(v) 
dv v v — 7l —a2/r2 

. (22) 

To obtain equation (22), we made use of the properties of u and 
v given in Appendix A. For odd n, the case of interest here, the 
factor on the right side of equation (22) involving P^d) is a 
finite series in v2. It follows that the right-hand side of equation 
(22) can be expressed as a finite series in a/r. By matching 
coefficients of powers of a/r, a suitable linear combination of 
the stream functions Wn, given by equation (9), can be super- 
posed upon Sn such that the net field has zero normal field 
component at the equator in the region r > a. Let us denote 
the desired linear combination by 

Tn= XX Wk(r, 6), (23) 
k<n 

where are the constant coefficients chosen to eliminate the 
normal field component contributed by Sn at the current sheet. 
The combined field + Tn is due to electric current sources 
located in the equatorial current sheet and the singularity of Tn 
at the origin. Direct calculation shows that the dipolar field Sl 
requires only the dipole field Wi to eliminate the normal field 
component at the equatorial current sheet. For n > 1, more 
than one term in the series in equation (23) are needed. Figure 
2a shows the magnetic lines of force of the combined field 
Si -h Tv Note that all lines of force are closed. In fact, the 
combined field has an infinite field strength at the inner edge of 
the equatorial current sheet. This feature arises from the 
closed-field topology. We can think of the equatorial current 
sheet as a rigid perfect electrical conductor that “ knifes ” into a 
closed field from infinity. The infinite conductivity of the 
current sheet structure excludes the exterior magnetic field, 
compressing the latter to an infinite strength at its inner radius. 
Associated with this infinite field strength is an outward 
Lorentz force localized at the inner edge of the current sheet, 
repelling the intruding rigid body. We go to the next step of 
construction, which opens up part of the magnetic flux and 
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Fig. i.-Lines of force in the (r, ö)-plane generated by the stream function /I, and its Kelvin transform S; with a = 4.0. The thick lines here and in the other figures 
represent magnetic field sources in the form of electric current sheets or magnetic monopoles in the equatorial plane. 

(a) <b> 

FIO 2. Lines of force in the (r, 0)-plane generated by the stream functions Sj + T, and Z! with a = 4.0. (a) Current sheet stress-free except at the point r a; (i>) 
current sheet everywhere stress-free. 
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reduces the field strength at the inner edge of the current sheet 
to zero so as to remove the undesired Lorentz force. 

Consider the special solution of equation (13) 

A = rj. (24) 

This stream function gives a potential magnetic field due to a 
disk of radius a centered at the origin, having a uniform dis- 
tribution of magnetic monopoles. As shown in Figure 3a, the 
field lines are all normal to the disk source. If we reverse the 
direction of the lines of force on one side of the equator, as 
shown in Figure 3b, we would have a magnetic field that has no 
sources in r < a but arises from the presence of an infinite 
equatorial current sheet with a circular hole of radius a cen- 
tered at the origin. The stream function for this magnetic field 
is just 

u= ±r,, (25) 

The singularity of the combined field Sn + Tn at the inner edge 
of the current sheet arises solely from the field Sn, since Tn is 
singular only at the origin. It turns out that this singularity of 
Sn, for any n, is of the same order as a similar singularity of U 
at the same location. Thus, we can eliminate the singularity of 
Sn by surperposing Sn with U, introducing a suitable amplitude 

ßn = —an(n + 1)[Ô„(îu)]„=0 
dP„(v) 

dv o 

to arrive at the combined stream function 

(26) 

Z„ = Sn + Tn + ßnU . (27) 

inner circular radius a. Figure 2b shows the lines of force for 
the case of n = 1. 

Since potential fields may be superposed linearly, we have a 
large class of stream functions of the form 

Z = YJynZn, (28) 
n 

where yn are constant coefficients, each term Z„ is taken to have 
the same parameter a, and we remind the reader that n is 
restricted to odd integers. If we are given the normal com- 
ponent of an axisymmetric magnetic field at r = 1 as a bound- 
ary condition, we can use equation (6) to match the radial 
derivative of Z evaluated at r = 1 to determine the coefficients 
yn. To be consistent with the formulation of the problem, the 
boundary condition must correspond to a magnetic field which 
both is axisymmetric and has symmetry about the equator. 
Otherwise, the current sheet cannot be assumed to be lying in 
the equator. We are unable to prove the completeness of the set 
of functions Zn in equation (28). Even if the set is complete, it 
remains a formidable task of inversion to obtain the coeffi- 
cients yn because, unlike the classical case of spherical harmo- 
nics, the set of functions in equation (28) are not orthogonal. 
However, a rich variety of solutions can be generated from 
equation (28) by simply prescribing the constant coefficients yn. 
A simple example is shown in Figure 4. Figure 4a is a sketch of 
the lines of force for Z3, showing the quadrupolar field mor- 
phology near r = 1. Note that the open part of the magnetic 
flux originates from mid-latitudes in the two hemispheres. The 
superposition 

Z = 3a2Zx - 4Z3 (29) 

This stream function describes a partially open potential mag- gives the field shown in Figure 4b. Comparing this field with 
netic field with a stress-free equatorial current sheet having an the field Z1 shown in Figure 2b, we find that the contribution 

(a) (b) 

Fig. 3.—Lines of force in the (r, 0)-plane generated by the stream functions rj and U with a = 4.0. (a) Field due to a disk, radius a, of uniformly distributed 
monopoles ; (b) field due to an infinite equatorial current sheet. 
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(a) A = Z3 (b) A = 3a2Z,+ 4Z3 

Fig. 4.—Lines of force in the (r 0)-plane generated by the stream functions Z3 and 3a2Zl + 4Z3 with a = 4.0 

of Z3 to the former gives rise to the multipolar topology in the 
equatorial closed field region in Figure 4b. For the interested 
reader, Appendix B contains explicit functional forms of 
and Z3. We have chosen to work with stream functions for the 
convenience of using them to plot magnetic lines of force. A 
similar construction of magnetic fields using the potential func- 
tion is outlined in Appendix B. 

III. MAGNETOSPHERES WITH EQUATORIAL DISKS 

The stream functions Zn that generate Z in equation (28) all 
have stress-free current sheets of the same geometric form, 
namely, the infinite equatorial plane with a circular hole of 
radius a centered at the origin. Linear superposition gives the 
resultant stream function Z a stress-free current sheet of the 
same geometric form. Suppose the superposition is not limited 
to the set Z„. Let us superpose Z, givey by equation (28), with 
an arbitrary potential stream function A which contains no 
current sheet in r > 1. The potential A will contribute an addi- 
tional magnetic flux that threads across the equatorial current 
sheet, resulting in a stress in the current sheet. To have equi- 
librium, we must introduce body forces to balance this stress in 
the current sheet. In this section, we consider the case where 
the magnetic stress is balanced in equilibrium by gravitational 
and centrifugal forces acting on dense matter in the electric 
current sheets. A rich variety of magnetic configurations of 
interest to modeling planetary and stellar magnetospheres can 
be constructed. We present some explicit examples below. In 
each example where a magnetic field is partially open, we do 
not, as in § II, attempt to account for the dynamical processes 
that keep the field open. A magnetic field may open up because 
of a stellar wind. If there is rotation, this wind may be due to 
the centrifugal force. 

We shall first consider an axisymmetric magnetosphere 
without rotation. Superpose Zx with a potential field made up 

of a dipole and a uniform magnetic field : 

' ^ „ sin20 „ 
Z = Zi +  + X2 r2 sm2Q , 

r 
(30) 

where ^ and À2 
are free constants to control the magnitudes of 

the added potential fields. The cases of 22 = 0, 2^0 and 
= 0, /I2 0, adding only the dipole or the uniform potential 

fields, are shown in Figures 5a and 6a respectively; we refer to 
them as cases I and II. In each case, the added field is taken to 
be oriented relative to the equatorial current sheet such that 
the Lorentz force in the current sheet is everywhere outward. 
This Lorentz force can be balanced everywhere by the weight 
of a surface mass m distributed over the equatorial current 
sheet given by 

GM0 m 1 
(31) 

where G is Newton’s constant, M0 the mass of the central star, 
J the surface electric current density, and c the speed of light. 
The surface mass m as a function of r, associated with cases I 
and II, takes the forms 

m = 

m = 

^a2 1 / _a!y^ 
nGM0 r

3 \ r2) 

2À2a
2 A a2\i/2 

nGM0 \ r2) ’ 

case I , 

case II, 

(32) 

(33) 

and their profiles are shown in Figure 7. The magnetic configu- 
ration in case I may be interpreted to be due to an equatorial 
accretion disk intruding into a partially open stellar magnetic 
field. The accretion disk has its own magnetic field which is not 
connected to the central star. It is the tension force of this 
bow-shaped magnetic field that supports the weight of the ac- 
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Fig. 5.—Lines of force in the (r, 0)-plane obtained by surperposing the Zx-field with dipole potential fields of opposite signs, with a = 4.0 and Ai > 0. {a) Case I. (b) 
Case III. 

(a) A= Z, -X2r
2sin2 9 (b) A-Z, + X2r

¿sirr 0 

IV. 
Fig. 6.—Lines of force in the (r, 0)-plane obtained by superposing the Z!-field with uniform fields of opposite signs, with a = 4.0 and À2 > 0. {a) Case II. (b) Case 
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Fig. 7.—Profiles of the surface mass density m(r) of the equatorial disk in the 
solutions displayed in Figs. 5, 6, 8, and 9. The profiles have been suitably 
normalized to fit onto the same graph. In each case, a — 4.0; for case VI, 
a' = 6.0. 

cretion disk material and prevents the disk from falling into the 
star. A similar support suspends quiescent prominences in the 
solar corona (Kippenhahn and Schlüter 1957). The magneto- 
sphere in case I is isolated in space so that, at large distances, 
the lines of force are radially open and the magnetic intensity 
falls to zero. With the particular value of used to obtain 
Figure 5a, part of the open radial magnetic flux originates from 
the accretion disk. If the parameter Ai is set sufficiently large, 
the weight of the accretion disk is increased linearly and the 
entire open radial magnetic flux comes from the accretion 
disk. In this case, the lines of force originating from the central 
star all close back on the star. We omit presenting this case 
graphically. Case II has an external uniform magnetic field 
aligned parallel to the magnetic polar axis of the central star. 
We can imagine the uniform field to be embedded in the inter- 
stellar medium or to approximate the field contributed by a 
companion star located far from the central star. In case II, the 
accretion disk is trapped in the largely uniform external mag- 
netic field, and the open part of the stellar magnetic field is not 
radial at large distances but bends over to open to infinity as 
part of the uniform field. Note that the electric current J is the 
same in both cases and the difference in the mass distributions 
is due to the added potential fields. In case I, the added dipole 
potential field drops rapidly with distance and m decreases 
with distance as 1/r3. In case II, the uniform field allows for a 
uniform mass distribution at large distances, where the 
Lorentz force decreases in direct proportion to the decreasing 
gravitational force. 

Suppose the matnetosphere is rotating uniformly, with 
angular speed œ. The centrifugal force dominates at distances 
larger than rc given by 

r c (34) 

If we reverse the signs of the added potential fields in Figures 

5a and 6a without reversing the electric current in the sheet, the 
Lorentz force in the electric current sheet would be reversed, as 
shown in Figures 5b and 6b. Let us refer to these as cases III 
and IV respectively. If we set the inner radius of the current 
sheet to be larger than rc, the inward Lorentz force can be 
balanced by the outward, centrifugally dominated, body force 
of a mass distribution given by 

(m2r - ^ J(Be)e=nl2 . (35) 

The mass distribution has the explicit forms 
; „2 1 / „2X1/2 

m = —(l-—) (r3 - rc
3)-1, case III, (36) 

nco r* \ 

n2 Í n2\^2 

m = —( 1 — “7 ] (r3 — r3)-1 , case IV , (37) 
nco \ rzJ 

with the profiles shown in Figure 7. It is interesting to note that 
reversing the added potential fields to obtain cases III and IV 
leads to the following features in field topologies. In case III, 
the system is isolated in space. Cool dense material in the 
rotating magnetosphere collects in the equator in the form of a 
disk to be held against being thrown out by the centrifugal 
force. The disk is held by magnetic field lines that are all 
anchored to the central star, as shown in Figure 5b. In case IV, 
the external uniform field has two important effects. It provides 
a buffer to hold the disk against the centrifugal force so that the 
magnetic field connected to the disk need not be anchored to 
the central star. Since the external uniform field is now anti- 
parallel to the stellar magnetic axis, the stellar field must be 
everywhere closed. In both cases, the Lorentz force in the 
current sheet decreases with radial distance, whereas the cen- 
trifugal force increases linearly with distance. Hence, the mass 
that must be supported by the Lorentz force is a rapidly 
decreasing function of distance. 

We go to case V, which is an example for a disk intruding 
into the region r <rc, where gravity dominates over the cen- 
trifugal force. Consider the potential magnetic field shown in 
Figure 8a. This potential magnetic field is a combination of the 
dipole and uniform fields with the constants À1 and A2 chosen 
so that 2.JÁ.2 = 2r3 so as to locate the equatorial X-type 
neutral point at r = rc. By further choosing the right sign of the 
net added potential magnetic field, we obtain the field shown in 
Figure 8h, where a Lorentz force is found in the current sheet 
acting outward in r < rc and inward in r > rc. This Lorentz 
force can be balanced by oppositely directed body forces in the 
two regions, as described by equation (35). It is fortuitious that 
this Lorentz force can support a mass distribution which 
has the same profile as that obtaining in case I, as shown in 
Figure 7. 

The following feature of the above constructions is note- 
worthy. In order to balance gravitational and centrifugal forces 
in the equatorial plane, we require the Lorentz force to be 
strictly radial there. This requirement can be met so long as the 
added potential magnetic field has no radial field component in 
the equatorial plane; and there is the interesting possibility of 
adding a potential magnetic field having this property but 
varying with three dimensions. The result is a three- 
dimensional model of a stellar magnetosphere. The problem is 
simplest without rotation. For example, the potential function 

= C, 4 P|(cos 0) + C2 4 PKcos 0) sin 2<¡>, (38) 
r r 
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Fig. 8.—Lines of force in the (r, 0)-plane of the potential magnetic field made up of a dipole field aligned parallel to a uniform field and the superposition of this 
potential field with the -field. The neutral point of the potential field is located at r = rc, where the centrifugal force in the disk balances the gravitational force of 
the central star, (b) Case V. 

with constant coefficients Ci and C2, describes a three- 
dimensional field which has no radial component in the equa- 
torial plane. By picking Ci sufficiently larger than C2, the 
component Bd, which goes to determine the Lorentz force in 
the current sheet, is everywhere of a fixed sign. Then, adding 
this potential field to a current sheet solution allow us to con- 
struct a three-dimensional model in which the Lorentz force 
supports the weight of an equatorial mass sheet that varies 
with r and 0. We leave the interested reader to explore the 
infinite varieties of models that can be generated in this 
manner. Note that the stream-function representation cannot 
be extended to the three-dimensional potential magnetic field. 

A magnetosphere rotating uniformly everywhere presents a 
serious problem of having distant parts of its structure moving 
at speeds that can exceed the speed of light. Classical descrip- 
tion must break down. In particular, the fluid theory in the 
nonrelativistic limit fails to apply. It should be pointed out, 
however, that within the classical description adopted here, the 
solutions displayed in Figures 5-8 are formally acceptable. In 
these examples where the mass points in the far reaches of the 
rotating current sheet are moving at enormous speeds, the 
mass decreases with radial distance so rapidly that the rota- 
tional energy decreases to zero and is relatively unimportant in 
the far region. Accounting for a proper outer boundary, where 
relativistic effects are important, lies beyond the scope of this 
paper, but there are two ways to avoid the unbounded high 
corotational velocities at infinity. This undesired property can 
be removed by taking the rate of rotation to be a function of r 
(Vasyliunas 1983). The point to note is that equation (35) deter- 
mines the product meo2 for large r. A mass distribution modi- 
fied from that of uniform rotation in this asymptotic region 
with a compensating reduced rate of rotation that vanishes at 
infinity removes the unbounded corotational velocities. 

Another procedure is to truncate the mass distribution at an 
outer radius beyond which the mass density is zero. To illus- 
trate this possibility, consider the superposition 

Z = Zi(a) + Zi(a'), (39) 

where the two terms in Zi have different values for the param- 
eter characterizing the inner radii of their respective equatorial 
current sheet. The combined field, case VI, is shown in Figure 
9, with a! > a> rc, that is, the current sheet of Z^a!) has a hole 
bigger than the current sheet of Z^a). The two current sheets 
overlap in the region r > a', where the combined current sheet 
is stress-free with zero mass density. In the region a' > r > a of 
the current sheet of Z^a), which does not overlap, a Lorentz 
force acts radially inward to support a mass density given by 

defined for the range a <r < a\ with the profile shown in 
Figure 7. 

IV. DISCUSSION 
One way of regarding the set of potential magnetic fields 

generated by the stream functions Zn is to think of them as a 
generalization of the set of axisymmetric spherical harmonic 
potential fields of the same index n. Taking the solution Z„, of a 
given n, to extend over all space, it reduces to the correspond- 
ing classical spherical harmonic potential function in the 
neighborhood of the origin, So, the function Zn represents a 
modification of the corresponding spherical harmonic poten- 
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Fig. 9.—Lines of force in the (r, 0)-plane obtained by superposing the 
stream functions Z^a) and Z^a'), with a' > a> rc. The surface mass is loaded 
only in the region a <r < a\ with no mass in the region a! <rc. Case VI. 

tial function to allow for the presence of an infinite equatorial 
current sheet which opens up a part of the magnetic flux to 
infinity. The parameter a is the radius of the inner circular 
boundary of the infinite equatorial current sheet and is free to 
be adjusted to control the amount of open magnetic flux. This 
generalization is restricted to fields that are axisymmetric and 
symmetric about the equator. This restriction on geometry is 
required in order to locate the current sheet on the equator, a 
simplification which facilitated the direct construction of the 
solutions in §§ II and III. It seems clear that the other spherical 
harmonic potential functions, lacking the symmetry assumed 
here, also have similar generalizations. To construct these 
other generalizations requires treating the current sheet as 
curved surfaces. For example, a north-south asymmetry would 
require a current sheet which is warped at near distances but, 
at large distances, may approach the form of an equatorial 
sheet perpendicular to the net dipole moment of the star. 
Treating this free-boundary problem is a challenging further 
development of the work reported here. 

In this paper, we have a limited but versatile set of current 
sheet solutions. The versatility comes from the availability of 
the principle of superposition, which allows us to generate a 
large variety of solutions. The superposition principle also 
allows us to extend the class of solutions to include those that 
have stressed current sheets and, in a limited way, those with 

variations in three dimensions. We have chosen only the sim- 
plest examples for presentation in §§ II and III, namely, the 
n = (1,3) solutions. As a simple physical illustration, let us 
estimate the total mass of the magnetodisk in the Jovian mag- 
netosphere, based on the magnetic configuration in Figure 5b 
and using certain macroscopic parameters of the disk electric 
current obtained from satellite observations by Connerney, 
Acuña, and Ness (1981). Jupiter has an equatorial radius of 
Rj = 7.14 x 109 cm, total mass M0 = 1.9 x 1030 g, a magnetic 
dipole strength of D = 4.2 G R^3, and a rotation rate of 
cd — 1.76 x 10-4 rad s_1. This fixes the point of balance 
between centrifugal and gravitational forces at rc = 2.24R}. 
Connerney et al. gave the inner radius of the equatorial current 
sheet to be a ~ 5Rj, with 60% of the total electric current lying 
inside r = 20Rj. The current sheet therefore lies in the region 
r > rc, where the centrifugal force is stronger than the planet’s 
gravitational force. The magnetic field in Figure 5b is gener- 
ated by 

Z (41) 

where we insert a constant amplitude y!. To fix the two con- 
stants y! and Al5 we fit the dipole strength at r = 0 given by 
equation (41) to the Jovian value of 4.2 G R^3 and demand 
that the field strength at r = 30Æj on the equator is twice that 
due to the internal source of Jupiter, as reported by Connerney 
et at. Having thus determined the magnetic field, we find that 
the electric current density peaks at r = 6.1Æj and 60% of the 
total current lies inside of r = 16Rj. The disk then has a mass 
density that peaks at r = 5.4Æj and declines rapidly as r-6 at 
large distances. The total mass is —4.4 x 1012 g, of which 60% 
lies inside r = 5.5R}. These are crude estimates made with the 
convenience of the closed-form solution for the magnetic field 
given in equation (41). A particular limitation of this solution is 
that the magnetic field of Jupiter is represented simply by a 
dipole source at the origin. In a more refined calculation, we 
should allow for the fact that the presence of the electric 
current sheet so close to the planet’s surface, with the inner 
radius of the current sheet located at 5R}, and the shielding 
effect of the planet’s ionized atmosphere can induce an effective 
multipole component to the planet’s contribution to the exter- 
nal magnetic field. The net field is than likely to be a super- 
position of the various Wn and Zn solutions with n = 1, 3, 5,. . . 
The distribution of the electric current in the sheet and the 
normal field at the sheet in the near zone is then different from 
that of the simple case in equation (41). The equilibrium mass 
density distribution in the near zone is accordingly modified. 
In the far zone, only the dipole term in the Wn expansion 
dominates, while the Zn take on the asymptotic form of an 
equatorial current sheet separating opposite radial magnetic 
fields. The latter has a current density that declines as r-2. The 
mass distribution in the far region is therefore basically 
unchanged from that given by equation (41), namely, one that 
declines as r~6. It is instructive to relate our magnetospheric 
models to those reported by Gleeson and Axford (1976) and 
Hill and Carbary (1978). In these other models, the starting 
point of the construction has been the free prescription of the 
distribution of the electric current density in the equatorial 
current sheet. The magnetic field due to this prescribed electric 
current density is then superposed with the dipole potential 
field of Jupiter to give the magnetic field everywhere. Gleeson 
and Axford considered two explicit examples: the = 1, 
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K2 = 0 and = 0, K2 = I solutions, in their notation. The 
former has a current sheet whose prescribed electric current 
density declines like r~2. This current distribution is consistent 
with an external magnetic field in the far region which is radial, 
of opposite signs on either sides of the current sheet, and 
declining like r~2. The solution can, in principle, be expressed 
as a linear combination of our Wn and Zn solutions. The second 
solution of Gleeson and Axford has a current sheet whose 
electric current density in the far region declines faster than 
r-2. This current distribution is not consistent with an open 
magnetic field in the far region. The closed geometry of the 
magnetic field in the far region requires the appearance of 
magnetic neutral points in the current sheet. Negative mass 
density can arise from changes in the sign of the Lorentz force 
across the neutral points; and from this, it was suggested that 
such a current distribution requires a breakdown of corotation 
and the presence of a magnetospheric wind, as considered in 
the model of Hill and Carbary (1978). The second model of 

Gleeson and Axford is of course not included in the set of 
linear combinations of the Wn and Zn solutions. The Zn solu- 
tions have been constructed with an explicit demand that all 
magnetic field lines are open in the far region. 

It is clear that a rich variety of idealized, analytic models has 
become available for illustrating the global magnetic configu- 
rations of the Sun and magnetospheres of planets and stars 
with rotating or nonrotating equatorial disks. We should also 
point out that the availability of the explicit solutions derived 
in this paper presents an opportunity to study linear hydro- 
magnetic stability of these equilibrium states by the classical 
techniques of perturbation expansion (Wu 1986). 

This work orginated from a conversation with Art Hund- 
hausen, who asked if partially open potential magnetic fields 
could be found in closed form. I thank him and Tom Bogdan 
for discussions. 

APPENDIX A 

MATHEMATICAL FORMULAE USED IN THE TEXT 

We first note that the oblate spheroidal coordinates ^ and rj have the range 0<<^<oo, —\<rj<l, generating elliptic and 
hyperbolic surfaces of revolution respectively. There are four degenerate surfaces. The surface ^ = 0 is the degenerate elliptic surface 
of revolution, forming a disk of radius a centered at the origin. The surface rj = 1 and r¡ — — 1 are the positive and negative z-axes 
respectively. Finally, the surface rj = 0 is the equatorial plane with a circular hole of radius a centered at the origin. It follows that £ 
is continuous everywhere and rj is continuous in r > a but is discontinuous with a change of sign across 9 = tt/2 in r < a. The 
degenerate surfaces £ = 0 and r¡ = 0 require careful evaluation of the derivatives taken on them. These derivatives are either zero 
and continuous or else discontinuous with a change of signs, across the equator. In the following equations, we give the various 
derivatives evaluated by approaching the equator from 0 < tt/2. 

i) Values onO = n/2,r < a: 

ii) Values on6 = tt/2, r > a: 

dr (Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 
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du dv 

v= 1 
aÂ 2\ 1/2 

du 
dd 

-1/2 

Vol. 310 

(MO) 

(All) 

(A 12) 

APPENDIX B 

CONSTRUCTION OF MAGNETIC FIELDS USING POTENTIAL FUNCTION 

In the oblate spheroidal coordinates, Laplace equation (3) takes the form 

d £2 d „ 2,^ £2 + >72 ^ 
dÇ ^ +l^ d£+ dri{í ^ ) ^ + (£2 + 1)(1 - t]2) d<t>2 = 0 . 

With axisymmetry, we have the solutions 

^ = Pnmnm, 

(Bl) 

(B2) 

where n is an integer (Morse and Feshbach 1953). These are the potential functions corresponding to the stream functions An given 
by equation (14). Carrying out the process of inversion with respect to the sphere of radius a centered at the origin and rendering the 
equatorial current sheet stress-free, it is straightforward to develop from Q>n, with n odd, a set of potential functions describing 
potential magnetic fields with equatorial, stress-free, current sheets, in the same manner as was done to obtain the stream functions 
Zn in § II. Let us denote these potential functions by 'I/

n. It is important to note that if a potential magnetic field B has potential Q> 
and stream function A, the Kelvin transformation applied to Q> and A separately, in the two different representations, may not yield 
the same transformed magnetic field. The potential functions 'F,, have been obtained by first performing the Kelvin transformation 
on <!>„ and, for the same n, they give magnetic fields which are quite distinct from the magnetic fields generated by the stream 
functions Zn, which are derived from the Kelvin transformation on the stream functions An. It can be shown that, for each given n, 
the magnetic field having the stream function Zn can be expressed linearly in terms of those given by the potential functions T'fc with 
k = 1, 2, 3,... .A similar linear retationship exists between the magnetic field with the potential function 'F,, and the magnetic fields 
having stream functions Zk with k = 1,2, 3,... .For the interested reader, we give the explicit forms ofZ„ and'F,, for n = 1 and 3 : 

^3 

= r(l — v2) (1 + u2) tan .1-4 
u J 

na2 sin2 6 
+ 2arj 

= - r(l - v2)(5v2 - 1) — 3(1 + u2)(5u2 + 1) tan 1 - + 15w3 + 13« 
u 

457ra4 sin2 6(5 cos2 6—1) 9na2 sin2 6 
+ ~s ? + ^— + 

a ( .1 \ '1 na2 cos 6 
= - v\ u tan -—11— tan - —  

= "(5t>3 - 3r)j~ — 1 2 ^ -, 1 5 2 2 - u(5u2 + 3) tan 1 - + - m2 + - 
2 u 2 3 

Sna* 5 cos30 — 3 cos 6 3na2 cos 0 „ .1 
+ —i 3 + ^ 2“ - 2 tan 1 - . 4 r* 2 r2 £ 

(B3) 

(B4) 

(B5) 

(B6) 
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