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ABSTRACT
We present a compact, self-consistent formulation for the description of polarized radiation from

magnetic-dipole transitions occurring in the magnetized solar corona. This work di†ers from earlier
treatments by and House in the 1970s, in that the radiative emission coefficients for theSahal-Bre� chot
four Stokes parameters, I, Q, U, and V , are treated to Ðrst order in a Taylor expansion of the line proÐle
in terms of the Larmor frequency of the coronal magnetic Ðeld. In so doing, the inÑuence on the scat-
tered radiation of both atomic polarization, induced through anisotropic irradiation, and the Zeeman
e†ect is accounted for in a consistent way. It is found that the well-known magnetograph formula, rela-
ting the V proÐle to the frequency derivative of the I proÐle, must be corrected in the presence of atomic
alignment produced by anisotropic irradiation. This correction is smallest for lines where collisions and
cascades dominate over excitation by anisotropic radiation, but it systematically increases with height
above the solar limb (up to a theoretical maximum of 100%, in the collisionless regime and in the limit
of vanishing longitudinal magnetic Ðeld). Although the correction to the magnetograph formula must be
calculated separately for each line as a function of heliocentric distance, it is likely to be small for some
lines of practical interest, along lines of sight close to the solar limb.
Subject headings : line : formation È Sun: atmosphere È Sun: corona È Sun: magnetic Ðeld

1. INTRODUCTION

Over a century ago, eclipse data showed the presence in the solar corona of looplike structures reminiscent of magnetic-
Ðeld patterns seen in the laboratory. Now we know that magnetic Ðelds emerging from solar subphotospheric layers, bu†eted
by photospheric convective motions, control the dynamics and heating of the corona. However, in spite of enormous strides in
our ability to determine vector magnetic Ðelds in the photosphere and properties of the plasma in the corona, our ability to
determine properties of the coronal magnetic Ðelds remains severely limited. Away from strong Ðelds associated with active
regions, few useful measurements of coronal Ðelds exist because they are extremely difficult to make. This is simply because
the Ðelds in the quiet-Sun corona are intrinsically weak (D10 G) and their inÑuence on the electromagnetic radiation emitted
by the coronal plasma is correspondingly weak.

It is important to try to determine coronal magnetic Ðelds observationally for some fundamental reasons. First, the basic
physical conditions change enormously from the photosphere to corona. In the photosphere, where almost all magnetic-Ðeld
measurements are made, the plasma is in a forced, high-b state in which magnetic Ðelds are conÐned by convective motions to
small tubelike structures Ðlling only a small fraction of the available volume. In the corona, momentum balance ensures that
the Ðeld must be almost in a force-free, low-b state, Ðlling all of the available volume. Second, there is still debate concerning
the basic MHD of the coronal plasma in response to the ““ driving motions ÏÏ at the photospheric level. Does the corona evolve
such that current sheets form naturally and abundantly, as suggested by ParkerÏs fundamental theorem of magnetostatics
(Parker 1994), or do processes occur to avoid such conÐgurations (Van Ballegooijen 1985)? Both of these points indicate that
magnetic-Ðeld extrapolation from photospheric measurements cannot presently be trusted, without even acknowledging the
fact that the extrapolation problem is very poorly posed (e.g., Low & Lou 1990). Thus, it is important to obtain more direct
measurements of properties of the coronal magnetic Ðeld.

At present, observations of two kinds o†er the best opportunities to determine properties of the coronal magnetic Ðeld,
radio observations and observations of the well-known coronal forbidden emission lines (see, e.g., the introduction of Judge
1998). The purpose of the present paper is to provide a consistent theoretical treatment of the latter, containing the essential
physics of the formation of the polarized emission lines under the inÑuence of both anisotropic radiation and the Zeeman
e†ect. This paper focuses on the radiative contribution to the statistical equilibrium of the radiating atom. Collision analysis
for speciÐc lines of interest will be deferred to future papers.

1.1. Historical Overview and Statement of the Problem
The 1960s marked a starting point for the spectroscopic diagnosis of coronal magnetic Ðelds using magnetic dipole (M1)

coronal emission lines in two distinct ways. First, Charvin (1965 ; see also Hyder 1965 ; Perche 1965a, 1965b) showed how
measurements of the linear polarization of these lines can be related to the direction of the magnetic Ðeld projected onto the
plane of the sky (POS). This e†ect arises because the corona is irradiated anisotropically by the photosphere, so that atomic
polarization is induced in the radiating atom (see ° 3.2). Second, Harvey (1969) attempted to use circular-polarization
measurements of the coronal green line (Fe XIV j5304) to determine the strength of the line-of-sight (LOS) component of the
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magnetic Ðeld, through the Zeeman e†ect. However, the technical difficulties encountered by Harvey (1969) were of a
magnitude that this longitudinal Zeeman e†ect has even now yet to be detected convincingly in M1 coronal emission lines,
although a mildly interesting upper limit of 40 G was obtained under nonoptimal conditions by Kuhn (1995). This indicates
that measurements will yield detections of the longitudinal Zeeman e†ect in the near future.

The work of Charvin (1965) helped to inspire two groups to develop coronal polarimetry, both observationally and
theoretically, over the following two decades. A coronal emission-line polarimeter, designed to observe linear polarization in
the M1 emission lines of Fe XIII at 10747 and 10798 was built and operated by a joint High Altitude Observatory/NationalA� ,
Solar Observatory (HAO/NSO) team. Successful results for the orientation of the magnetic Ðeld in the POS and comparisons
between computed and measured degrees of polarization are discussed by Querfeld & Smartt (1984) and Arnaud & Newkirk
(1987). Similar results for an instrument observing the coronal green line, operated at Pic-du-Midi Observatory, are described
by Arnaud (1982).

Theoretical work developed along with observational work. Two important steps were taken in the 1970s. First, Sahal-
(1974, 1977) and House (1977) included collisional terms in the description of the statistical equilibrium of theBre� chot

radiating atom. Second, in (1977), use was made of the powerful formalism based on the multipolar expansionSahal-Bre� chot
of the density matrix of the radiating atom over the basis of the irreducible spherical tensor operators (e.g., Brink & Satchler
1968 ; Blum 1981). In fact, this choice of basis, rather than the standard basis built from the atomic-Hamiltonian eigenstates, is
the most appropriate for the description of atomic polarization, because of the direct physical meaning that can be attributed
to the various multipole orders of the irreducible spherical tensors, which will be illustrated by the symmetry and invariance
properties of multipoles to be discussed in this paper (see °° 2.1, 2.4, 3.1, and 3.3). In addition, the polarization properties of the
emitted radiation are expressed in their simplest form in that basis.

A limit in previous theoretical treatments of the formation of M1 coronal lines in the presence of magnetic Ðelds is that the
circular polarization (V proÐle) was explicitly assumed to be zero. This is consistent to zeroth order in a Taylor expansion of
the line proÐle in terms of the Larmor frequency of the coronal magnetic Ðeld, assuming that Ðrst-order e†ects (i.e., the
longitudinal Zeeman e†ect) be completely negligible (see ° 2.3). For this reason, and also because of the technical difficulties in
measuring the Stokes proÐles as functions of frequency, all previous theoretical work on the problem of M1 coronal emission
lines focused only upon linear polarization and frequency-integrated line proÐles. On the other hand, the few observational
attempts to detect the longitudinal Zeeman e†ect in those lines (Harvey 1969 ; Kuhn 1995) aimed at an interpretation based
on the well-known ““magnetograph formula ÏÏ (see ° 4, eq. [40]), relating the V proÐle to the frequency derivative of the I
proÐle, without addressing the physics of resonance scattering. These two approaches have historically been used indepen-
dently of one another. In reality, they should be treated together, as both resonance-scattering linear polarization and
Zeeman-e†ect circular polarization can be a†ected by atomic polarization. The purpose of the present paper is to provide a
consistent treatment of both linear and circular polarizations of M1 coronal lines by extending previous theoretical treat-
ments with the inclusion of Ðrst-order magnetic e†ects on the line proÐle.

We adopt the nonrelativistic quantum theory of line formation under the hypothesis of complete redistribution of fre-
quency, put forward in the 1980s by Landi DeglÏInnocenti in a series of papers (Landi DeglÏInnocenti 1983, 1984, 1985,
hereafter LA83, LA84, and LA85, respectively). The formalism of the irreducible spherical tensors is easily implemented in the
theory, so both the former and the new results on the polarization properties of M1 coronal lines can be derived in a
straightforward way.

The hypothesis of complete redistribution is equivalent to assuming that the incident radiation has no spectral structure
across the spectral range of a radiative transition in the atom (Ñat-spectrum approximation). This condition is normally
satisÐed in the frame of reference of the atom, at least for transitions in the IR and in the visible. When the thermal motion of
the atoms in the hot corona is taken into account, instead, Doppler redistribution can be an issue. Even in that case, for the
highly ionized atomic species of interest, IR and visible transitions generally do not match signiÐcant spectral features of the
photospheric spectrum. As a notable exception, among the lines predicted to be strong enough for one even to attempt to
measure the longitudinal Zeeman e†ect (see Judge 1998, Table 4), we can cite Fe XIV j5304. Because of the elevated line
density in the UV, partial redistribution could in principle be an issue at shorter wavelengths. However, UV transitions in the
corona are largely dominated by collisional excitation and by collisional and/or radiative spontaneous deexcitation, so the
UV spectrum from the underlying solar atmosphere does not play an essential role in the statistical equilibrium of the atom.

Before proceeding, we wish to remind readers unfamiliar with the density matrix formalism of two basic facts. First, the
density matrix extends the description of an atomic system beyond the simple concept of ““ populations of the atomic states ÏÏ
(described by the diagonal elements of the density matrix in the standard representation) by introducing the concept of
““ quantum coherences ÏÏ between di†erent atomic states (described by the o†-diagonal elements of the density matrix in the
standard representation). Second, the physics of line formation must be independent of the particular representation adopted
for the density matrix, so an entirely equivalent calculation to the one presented here could be done in the standard
representation based on the atomic-Hamiltonian eigenstates (see 1974 ; House 1977, for the restricted problemSahal-Bre� chot
of the linear polarization of M1 coronal lines), rather than on the irreducible spherical tensors. However, as already
mentioned, the formalism of the irreducible spherical tensors allows us to develop a more compact formulation of the
mathematical problem, and a deeper understanding of the physical problem is gained, as the various symmetry and invari-
ance properties of the system stand out clearly.

2. STOKES VECTOR OF THE SCATTERED RADIATION

Most commonly, the forbidden lines that are observed in the solar corona (e.g., the green line of Fe XIV at 5304 the redA� ,
line of Fe X at 6374 and the infrared lines of Fe XIII at 10747 and 10798 are optically thin emission lines that originate inA� , A� )
the M1 transitions o*J o\ 1 within the ground term, i.e., transitions of the form where speciÐes the atomic(a0 J) ] (a0 J0), a0
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conÐguration of the ground term (the particular kind of coupling is not of concern here). These lines are excited in the corona
both by isotropic collisions with charged particles (through both direct excitation and cascade processes) and by anisotropic
radiation from the underlying photosphere, which is reemitted in all directions in the process known as ““ resonance scat-
tering.ÏÏ The observed lines then carry a polarization signature that is typical of this scattering process. If a magnetic Ðeld is
present, each level J is split into a series of 2J ] 1 Zeeman substates, distinguished by the magnetic quantum number, M. In
that case, the polarization signature is modiÐed with respect to the Ðeld-free case, and in principle it carries a complete
information on the local vector magnetic Ðeld (apart from the well-known 180¡ ambiguity in the determination of the
magnetic-Ðeld orientation on the POS; see eqs. [39b] and [39c]).

In general, the transport of polarized radiation is governed by a vector radiative transfer equation of the form (see, e.g.,
LA83)

d
ds

S \ [MS ] E ,

where S 4 (I, Q, U, V ) is the Stokes vector of the radiation Ðeld, M is the 4 ] 4 absorption matrix, E is the emission vector,
and s is the linear coordinate along the LOS. In our case, all lines of interest are optically thin along all LOSs through the
corona because of the small oscillator strengths and low column densities of the coronal plasma (both of which contribute to
the optical depth, and hence to the norm of the absorption matrix M), so the solution of the radiative transfer equation
is simply determined by integrating the emission vector along the LOS. We then need to consider only the emission
coefficients (i\ 0, 1, 2, and 3, indicating the four Stokes parameters I, Q, U, and V , respectively) at the observede

i
(u, kü )

frequency, u, and for a propagation direction of the scattered radiation, coincident with the LOS.kü ,

2.1. Irreducible Representation of the Emission Coefficients
Because only the transition contributes signiÐcantly to the scattered radiation from the atom within the(a0 J)] (a0 J0)lineÏs spectral range, we can safely adopt the expression for the emission coefficients valid in the approximation of the

two-level atom. In the frame of reference of the magnetic Ðeld (the ““B frame ÏÏ), such that the local vector magnetic Ðeld is
aligned with the quantization axis that expression is given by2 (cf. Landi DeglÏInnocenti, Bommier, &(x3-axis), Sahal-Bre� chot
1991, eqs. [41] and [36])
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In the above equation, N is the number density of the radiating ion ; is the Einstein coefficient for theA(a0 J ] a0 J0)M1spontaneous M1 transition are the irreducible spherical components of the density matrix (or(a0 J)] (a0 J0) ; o
Q
K(a0 J)

statistical tensor) of the excited level are the irreducible spherical components of suitable geometric(a0 J) ; T
Q
K(i, kü )M1tensors, specifying the geometry of the observer (i.e., the LOS, and the orientation of the reference direction forkü ,

linear-polarization measurement ; see Fig. 1) with respect to the frame of reference adopted ; and '(u0[ u) \/(u0[ u)
is the complex line proÐle centered on (in general, / is the Voigt proÐle and t is the associated Faraday-] it(u0[ u) u0Voigt dispersion function). The last row of equation (1) is a product of four 3-j symbols (see, e.g., Brink & Satchler 1968), which

describes the coupling of the multipole orders K and K@ with the angular-momentum states J and of the atom in the upperJ0and lower levels, respectively.
The components of the statistical tensor for a level (aJ), are related to the elements of the density matrix in standardo

Q
K(aJ)

representation, through the formula (e.g., LA84, eq. [28])oaJ(M, M@),
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The multipole order of the statistical tensor is therefore restricted to the values K \ 0, . . . , 2J, because of the 3-j symbolo
Q
K(aJ)

in equation (2). In particular we note that

o00(aJ)\ 1

J2J ] 1
;
M

oaJ(M, M) . (3)

Therefore, if the normalization of the density matrix in standard representation is chosen so that represents theoaJ(M, M)
probability of Ðnding the atomic system in the sublevel (aJM), then gives the total probability of occupancy(2J ] 1)1@2o00(aJ)
(i.e., the population) of the level (aJ). Because of the condition M@[ M ] Q\ 0, implied by the 3-j symbol in equation (2), we
also see that for a completely diagonal density matrix (in standard representation) the only nonvanishing components of the

2 Please note that in the following equation Q indicates the components of the irreducible spherical tensors of order K and K@, not the Stokes Q parameter.
Throughout this paper, the context should always be clear enough to understand the current use of the symbol Q.
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FIG. 1.ÈGeometry of the observer in the frame of reference adopted. The plane of polarization, generated by the basis vectors for linear polarization, e1(k)
and is normal to the propagation vector, k (unit vector The position angle c Ðxes the reference direction for linear-polarization measurements,e2(k), kü ).

along which is measured.e1(k), 12(I] Q)

statistical tensor are those with Q\ 0. In this particular case, a direct evaluation of the 3-j symbol involved in equation (2)
shows that the orientation and alignment of the level (aJ) are respectively described by the multipole orders (cf. Sahal-Bre� chot
1977, eqs. [11] and [12])

o01(aJ)\ J3

JJ(J ] 1)(2J ] 1)
;
M

MoaJ(M, M) (4)

and

o02(aJ)\ J5

JJ(J ] 1)(2J ] 1)(2J [ 1)(2J ] 3)
;
M

[3M2[ J(J ] 1)]oaJ(M, M) . (5)

The geometric tensors, are given in Table 1. They are related to the analogous tensors (originallyT
Q
K(i, kü )M1, T

Q
K(i, kü )E1introduced in LA83 ; see Appendix I in that paper), entering the expression of the emission coefficients for electric-dipole (E1)

transitions, through the equations
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5
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0
0
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(6)

(This relation is ultimately determined to the pseudovector character of the radiation magnetic Ðeld entering the interaction
Hamiltonian.) The multipole order of the geometric tensors is restricted to the values K \ 0,1,2 only, because ofT

Q
K(i, kü )M1the dipole character of the transitions considered (see last 3-j symbol of eq. [1]).

The most relevant property of the irreducible representations of the statistical and geometric tensors is the physical
invariance of their multipole orders under transformation of the coordinate system. In fact, if S and S@ are two di†erent frames
of reference connected by the Eulerian rotation the irreducible spherical components of the statistical and geometricR
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,

tensors in S and S@ are related by (e.g., LA84, eqs. [31] and [A18])
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where K \ 0,1,2, are the rotation matrices associated with the transformation (e.g., Brink & Satchler 1968). InD
Q{Q
K (R

SS{
), R

SS{particular, if a given multipole K vanishes identically (i.e., all associated Q components are vanishing) in a particular frame of
reference, then it identically vanishes in any frame of reference.



TABLE 1

EXPRESSIONS OF THE GEOMETRIC TENSORS T
Q
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T
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K(i, kü )M1 Expression
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NOTE.ÈThe components with negative Q value can be obtained from the conjuga-
tion property, The angular parameters for theT~Q
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observerÏs geometry, Ë, r, and c, are deÐned in Fig. 1.
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2.2. T he No-Coherence Hypothesis
In writing equation (1) we in principle allowed for the presence of quantum coherences between di†erent Zeeman sublevels

of the excited level, since we did not impose any restrictions on the Q components of the statistical tensor. It is(a0 JM)
therefore appropriate to state at this point the general properties of the radiating atom, concerning quantum coherences
between atomic levels, in light of the di†erent processes involved in the excitation and de-excitation of those levels.

First of all, quantum coherences between di†erent J levels can always be neglected in our problem. This is easily under-
stood when the J levels pertain to the same term a, because the Ðne-structure splitting is much larger than the typical Zeeman
splitting for the ionic species of interest and for the range of magnetic intensities that are believed to exist in the corona (except
perhaps for Rydberg states of the ion), so the quantum states associated with those levels evolve incoherently. When J levels
from di†erent atomic terms are involved, instead, such a conclusion is less obvious, as level crossing in principle can occur
because of distinct terms that overlap in energy range. However, for the ionic species of interest, this kind of level crossing
never involves the ground term, whereas higher terms are populated and depopulated only by isotropic collisional and
radiative processes (see ° 3), so that all J levels above the ground term are always in a condition of natural excitation (cf.

1977), meaning that the magnetic substates are equally and incoherently populated within a given level (aJ).Sahal-Bre� chot
For all these reasons, it is safe to assume that quantum coherences between any J levels in the atom can be neglected. This
assumption is ultimately expressed by the condition of block-diagonality of the density matrix in standard representation
with respect to a and J,

o(aJM, a@J@M@) \ daa{ dJJ{
oaJ(M, M@) . (8)

For the same reason, all Zeeman sublevels above the ground term also are in a condition of natural excitation. In addition, all
lines of interest form in the ““ strong-Ðeld ÏÏ regime, such that where is the Larmor frequency of the applieduL ?AM1, uLmagnetic Ðeld and the Einstein coefficient for the spontaneous M1 transition of interest. Therefore, quantum coherencesAM1between any Zeeman sublevels in the atom can also be neglected in the B frame, so we can write, in general,

oaJ(M, M@) \ d
MM{ oaJ(M, M) . (9)

As we already observed, in the formalism of the irreducible spherical tensors, condition (9) translates into
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In that case equation (1) becomes more simply
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2.3. First-Order Expansion of the Emission Coefficients
Because of the high temperatures and low densities in the corona, the Voigt broadening proÐle, /, that enters equation (11)

is Doppler dominated, and the typical line width for the lines and magnetic intensities of interest is much larger (by at least
2È3 orders of magnitude) than the typical Zeeman splitting. In this situation, it is safe to approximate the proÐle / in equation
(11) by its Taylor expansion in terms of the Zeeman splitting, about the center of gravity of the line,du

MM0
, u6 4 ua0 J,a0 J0

.
Limiting this expansion to the Ðrst order of we then havedu
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where the Zeeman splitting is, to the Ðrst order of perturbation,
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M0) , (13)

and being the factors of the levels and respectively. Substitution of equations (12) and (13) intoga0 J
ga0 J0

Lande� (a0 J) (a0 J0),equation (11) then yields, after summation over the magnetic quantum numbers through standard methods of RacahÏs
algebra, the emission coefficients for the scattered radiation as the sum of a zeroth-order contribution and a Ðrst-order
contribution,
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The expression of is derived simply by means of a summation formula for the product of four 3-j symbols (e.g.,e
i
(0)(u, kü )

eq. [8], p. 454, of Varshalovich, Moskalev, & Khersonskii 1988). One then Ðnds (see also LA84, eq. [33], with Q\ 0)
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N(2J ] 1)A(a0 J ] a0 J0)M1/(u6 [ u) ;
K

([1)1`J`J0J3
4
5
6
0
0

1 1 K
J J J0

7
8
9
0
0o0K(a0 J)T0K(i, kü )M1 . (14)

The derivation of is only slightly more involved. First one has to express the azimuthal quantum numbers M ande
i
(1)(u, kü ) M0from equation (13) in terms of 3-j symbols, through the formula

m\ ([1)j~mJj( j ] 1)(2j ] 1)
(
t
:

j j 1
m [ m 0

)
t
;

, (15)
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and then to perform the two resulting sums of products of Ðve 3-j symbols by means of appropriate formulae (e.g., eqs. [13]
and [14], p. 456, of Varshalovich et al. 1988). One then Ðnds

e
i
(1)(u, kü )\ uL

+u
4n

N(2J ] 1)A(a0 J ] a0 J0)M1/@(u6 [ u) ;
KK@

J3(2K ] 1)(2K@] 1)
(
t
:

1 K K@
0 0 0

)
t
;

]
3
([1)J~J0~1ga0 J

JJ(J ] 1)(2J ] 1)
4
5
6
0
0

1 K K@
J J J

7
8
9
0
0

4
5
6
0
0

1 1 K@
J J J0

7
8
9
0
0

] ga0 J0
JJ0(J0] 1)(2J0] 1)

4
5
6

0
0

1 K K@
J0 J 1
J0 J 1

7
8
9

0
0
4

o0K(a0 J)T0K{(i, kü )M1 . (16)

We note that in equations (14) and (16), 6-j and 9-j symbols (see, e.g., Brink & Satchler 1968) are obtained as a consequence of
the contraction of the 3-j symbols of the original expression, equation (11).

By comparison of equations (14) and (16), we see at once that the magnitude of the Ðrst-order contribution to the scattered
radiation is of the order of times the zeroth-order contribution. Therefore, given the magnetic intensityuL(/@//)DuL/*uDand coronal temperature, the Ðrst-order contribution is larger the smaller the frequency of the M1 transition under investiga-
tion. For this reason, M1 coronal lines in the infrared are to be preferred over visible lines for detection of circular
polarization induced by the weak coronal magnetic Ðelds. This fact also provides further justiÐcation for the neglect of
circular polarization in earlier theoretical treatments of M1 coronal line formation, since high-quality spectropolarimetry in
the infrared has only recently become possible (Kuhn 1995).

The irreducible representation adopted for equations (14) and (16) provides a direct physical interpretation of the contribu-
tion of di†erent multipole orders of the density matrix, describing di†erent conditions of atomic polarization, to the polariza-
tion signature of the scattered radiation. First of all, from the 6-j symbol in equation (14), we see that only the multipole orders
K \ 0 (level population ; see eq. [3]), K \ 1 (level orientation ; see eq. [4]), and K \ 2 (level alignment ; see eq. [5]), can
contribute to the zeroth-order emission coefficients of the scattered radiation, whereas in equation (16) a contribution from
K \ 3 can also be present (for K@\ 2 ; see 3-j symbol in eq. [16]). From inspection of equations (14) and (16) and Table 1, we
then can write the correspondences in Table 2.

This has to be read in the sense that, for each value of i, only the corresponding values of K listed in the table can contribute
to the ith component of the emission vector to each respective order in This table illustrates the well-known resultuL/*uD.
that, to zeroth order in the Taylor expansion of the line proÐle, linear polarization in the scattered radiation (i \ 1,2) can be
produced only in the presence of atomic alignment (K \ 2), whereas atomic orientation (K \ 1) is needed in order to produce
circular polarization (i\ 3). In the next section we will see that atomic orientation can safely be neglected in the solar corona,
because the radiation Ðeld from the underlying photosphere is, to a very good approximation, unpolarized. In that case, Table
2 shows additionally that the lowest order of circular polarization in the scattered radiation is determined by the
(longitudinal) Zeeman e†ect (K \ 0), rather than by atomic alignment as in the case of linear polarization. This justiÐes
mathematically the fact, mentioned in ° 1, that circular polarization could be neglected in earlier work on the theory of M1
coronal-line formation (e.g., 1974, 1977 ; House 1977), because these magnetic, Ðrst-order e†ects were unde-Sahal-Bre� chot
tectable with the instrumentation available at that time but should be within reach of the present spectropolarimetric
techniques and instrumentation (e.g., Kuhn 1995). Finally, from Table 2 we also see that there is no contribution from atomic
population (K \ 0) to linear polarization (i\ 1,2). As in the case of circular polarization, such a contribution is associated
with the (transverse) Zeeman e†ect, and it would appear in the expressions of the emission coefficients only if we expanded the
line broadening proÐle, /, to second order in the Zeeman splittings (cf. eqs. [12] and [13]). These magnetic, second-order
e†ects on linear polarization are completely undetectable for the magnetic Ñux densities characteristic of the solar corona, so
they are not considered here.

2.4. Choice of the Frame of Reference
We recall that equations (14) and (16) express the emission coefficients in the B frame. As originally pointed out by Charvin

(1965), this is the proper frame for magnetic-Ðeld diagnostics, because the scattered radiation is most simply expressed in
terms of the inclination angle of the magnetic Ðeld on the LOS and of the position angle of the magnetic-Ðeld projection onto
the POS. In our derivation, that ““ simplicity ÏÏ is implied by the fact that only the components with Q\ 0 of the geometric

TABLE 2

CONTRIBUTING MULTIPLES OF THE DENSITY MATRIX

i e
i
(0)(u, kü ) e

i
(1)(u, kü )

0 . . . . . . . . . . . . . . . . . . . . 0, 2 1, 3
1 . . . . . . . . . . . . . . . . . . . . 2 1, 3
2 . . . . . . . . . . . . . . . . . . . . 2 1, 3
3 . . . . . . . . . . . . . . . . . . . . 1 0, 2
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tensors enter the emission coefficients in the B frame (see Table 1) and therefore it is ultimately related to theT
Q
K(i, kü )M1no-coherence hypothesis (° 2.2).

In forward modeling, instead, it is more convenient to express the emission coefficients for the scattered radiation,
equations (14) and (16), in a frame of reference with the directed as the local vertical of the Sun at the observed pointx3-axis
(the ““ S frame ÏÏ), making use of the transformation property of the geometric tensors under rotation of the coordinate system,
equation (7b). We then have

T0K(i, kü )M1\;
Q
D

Q0K (R)[T
Q
K(i, kü )M1]S , (17)

where R is the quantum operator corresponding to the Eulerian rotation that transforms the S frame into the B frame. If the
of the B frame has the direction in the S frame (see Fig. 5), we can choose the Eulerian rotation so that thex3-axis (Ë

B
, r

B
)

operator R has the form

R(r
B
, Ë

B
, 0) \ exp ([ir

B
J3) exp ([iË

B
J2) ,

with (i\ 1, 2, 3) being the Cartesian components of the total angular momentum operator, J, in the S frame. The rotationJ
imatrix entering equation (17) is then explicitly given by

D
Q0K (R) \ exp ([ir

B
Q)d

Q0K (Ë
B
) . (18)

[For K ¹ 2, the real quantities are conveniently tabulated by Brink & Satchler 1968, in the form of algebraic functionsd
QQ{K (Ë)

of Ë.] The explicit expressions of the emission coefficients as functions of the di†erent diagnostic quantities in both the B and S
frames will be given in ° 4.

It is important to observe that, although both and are in general complex quantities, the sum over QD
Q0K (R) [T

Q
K(i, kü )M1]Sin equation (17) is a real quantity. In fact, because of the conjugation properties of the rotation matrices (e.g., Brink &D

QQ{K (R)
Satchler 1968) and of the geometric tensors (see Table 1),T

Q
K(i, kü )M1

[D
QQ{K (R)]* \ ([1)Q~Q{D~Q~Q{K (R) , [T

Q
K(i, kü )M1]*\ ([1)QT~Q

K (i, kü )M1 ,

we have

;
Q

[D
Q0K (R)]*[T

Q
K(i, kü )M1]S* \ ;

Q
([1)2QD~Q0K (R)[T~Q

K (i, kü )M1]S
\;

Q@
D

Q{0K (R)[T
Q{K (i, kü )M1]S .

In particular, this argument shows that K \ 0,1,2, are real quantities in any frame of reference (see Table 1).T0K(i, kü )M1,

3. STATISTICAL-EQUILIBRIUM EQUATIONS

Equations (14) and (16) give the Stokes vector of the scattered radiation, once the statistical-tensor components for the
initial level of the transition, have been determined by solving the set of statistical-equilibrium equations for theo0K(a0 J),
radiating atom. These equations form a set of Ðrst-order, linear ordinary di†erential equations, whose solution in the
stationary regime completely determines the populations of the atomic substates. (Because the coronal plasma is optically
thin, we can neglect any ““ back-reaction ÏÏ of the emitted radiation on the statistical equilibrium of the atom.) If only radiative
processes are included, the statistical-equilibrium equations for our problem have the form (cf. LA84, eq. [47])

d
dt

o0K(aJ)\ [R
K0(1)(aJ)[ R

K0(2)(aJ) ] R
K0(3)(aJ) ] R

K0(4)(aJ) ] R
K0(5)(aJ) [ R

K0(6)(aJ) , (19)

where R(i) are the radiative rates for the di†erent processes depicted in Figure 2. We notice that we accounted for stimulated-
emission processes (rates R(2) and R(5)), because in the case of infrared lines (approximately for wavelengths km) suchZ2
processes can compete with spontaneous-emission processes in determining the population and polarization of the atomic
levels. (On the contrary, for spectral lines in the visible, stimulated emission can always be safely neglected.) One should also
notice that in equation (19) the complex term that is responsible for the phenomenon of ““ relaxation of coherences ÏÏ in the
Hanle-e†ect regime of magnetic Ðelds (see, e.g., LA85, eq. [11]) is absent because of our initial assumption of vanishing
coherences between di†erent Zeeman substates, equations (8) and (9). For this reason, in the absence of coherences, the
magnetic Ðeld can a†ect the density-matrix elements of the atomic system only through a modiÐcation of the radiative rates
R(i) (see later in this section).

Besides radiative processes, collisional excitation and de-excitation (induced by inelastic and superelastic collisions,
respectively) are also important for these lines. In the usually adopted impact approximation (the collision time assumed to be
much smaller than the lifetimes of the levels), the associated collisional rates, C(2), C(3), C(5), and C(6), can simply be added to
the corresponding radiative rates (e.g., Lamb & ter Haar 1971). Collision-induced transitions between di†erent Zeeman
sublevels within the same level (aJ) must also be taken into account. These so-called depolarizing, collisional transitions
contribute an additional collisional rate, C(0), to the statistical-equilibrium equations.

The multilevel problem underlying the formation of the investigated lines, along with the kind of processes involved in the
excitation and de-excitation of the levels, is sketched in Figure 3. In general, all six radiative rates for M1 transitions, and all
Ðve collisional rates, must be considered for transitions within a given term a (including the ground term). That term is
connected to upper and lower terms, and that are well separated in energy from a (so that stimulated emission can bea

u
a
l
,

neglected), through collisional excitation (transition rates C(3) and C(6)), and through either E1 spontaneous de-excitation
(transition rates R(1) and R(4) for E1 transitions) or M1 spontaneous de-excitation plus collisional de-excitation (transition
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FIG. 2.ÈGrotrian diagram for the radiative excitation and de-excitation processes a†ecting the density-matrix elements of the sublevels m and n. Straight
lines represent spontaneous emission processes, whereas wavy lines represent radiation-ÐeldÈinduced processes (i.e., absorption and stimulated emission).

rates R(1) and R(4) for M1 transition plus C(2) and C(5)). However, if two di†erent terms, a and a@, are very close or even overlap
in energy, radiative (besides collisional) excitation between the two terms becomes possible, so that all six radiative rates (for
E1 and M1 transitions) need be included in the multilevel calculation. In the case of overlapping terms, level crossing can also
become an issue, since stimulated emission can in principle create coherences between the crossing levels. However, for all
ions of interest, even in the presence of kilogauss magnetic Ðelds, level crossing involves only highly excited levels that rapidly
decay via spontaneous de-excitation, so those levels are always naturally populated. For the same reason, J can be considered
a ““ good quantum number ÏÏ for the description of the multilevel atom, even in the presence of the coronal magnetic Ðeld.

Taking into account collisions, equation (19) becomes

d
dt

o0K(aJ)\ [R
K0(1)(aJ)[ R

K0(2)(aJ) ] R
K0(3)(aJ) ] R

K0(4)(aJ) ] R
K0(5)(aJ) [ R

K0(6)(aJ)

[C
K0(0)(aJ)[ C

K0(2)(aJ) ] C
K0(3)(aJ) ] C

K0(5)(aJ) [ C
K0(6)(aJ) . (20)

Because we are assuming completely isotropic collisions, the various collisional transition rates, C(i), relate, in each statistical-
equilibrium equation, only statistical-tensor components with the same multipole order K. In other words, in equation (20)

FIG. 3.ÈSimpliÐed scheme of the multilevel problem for the coronal forbidden lines of interest. a represents the general term of the atom, whereas anda
uare representative of upper and lower terms that are well separated in energy from a. a@ is representative of possible terms that overlap in energy with thea

lgiven term a. Zeeman sublevels are not resolved in this picture.
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the collisional transition rates will involve only statistical-tensor components of the form (This is a general propertyo0K(a@J@).
of the transition rates expressed in the representation of the irreducible spherical tensors, when only isotropic processes are
active. In particular, that property would hold as well for the radiative rates in case of a completely isotropic incident
radiation Ðeld ; cf. eqs. [24b], [24c], [24e], and [24f] below, with the restriction K@@\ 0.) As we anticipated in ° 1, we do not
further discuss the problem of collisions here and defer it to future work in progress in which speciÐc lines of interest will be
considered.

We should notice that ionization and recombination rates are not included in equation (20), as these rates are much smaller
than the radiative and collisional rates associated with transitions within a given ionic species, under conditions close to
ionization equilibrium. For these reasons, the statistical-equilibrium equation (20) refers to only the speciÐc ion undergoing
the transition associated with the particular coronal line under investigation.

The solution of the set of statistical-equilibrium equations (20) in the stationary regime is Ðnally determined by equating to
zero the time-derivative term on the left-hand side, so that a homogeneous set of linear equations with null determinant is
obtained. As is customary, one of the redundant equations is replaced by the normalization condition for the trace of the
statistical operator of the atom (cf. eq. [3],

Tr(o) \ ;
aJ

J2J ] 1 o00(aJ) \ 1 , (21)

which expresses the conservation of number density for the speciÐc ion of interest.
3.1. Hypotheses on the Incident Radiation Field

We now introduce two assumptions on the nature of the incident radiation Ðeld from the photosphere that will simplify
considerably the calculation of the radiative rates associated with radiation-ÐeldÈinduced processes (see Fig. 2). The selective
““ population ÏÏ and ““ depopulation ÏÏ of a given multipole of the statistical tensor by radiation-ÐeldÈinduced processes at theK0frequency is determined, via particular selection rules for the multipole orders (see eqs. [24b], [24c], [24e], and [24f],u0below), by the following tensors of the average incident radiation Ðeld,

J1
Q
K(u0)E1,M1 \

P
du/(u0[ u)

Q dkü
4n

;
i/0

3
T

Q
K(i, kü )E1,M1 S

i
(u, kü ) , (22a)

F1
Q
K(u0)E1,M1 \ J1

Q
K(u0)E1,M1M/] tN , (22b)

where are the four Stokes parameters of the incident radiation Ðeld. The Ðrst assumption we make is that the incidentS
i
(u, kü )

radiation Ðeld is, to a very good approximation, unpolarized, so we can put in equations (22a) andS
i
(u, kü ) \ d

i0S0(u, kü )
(22b). From Table 1 and equation (6) we then see that in any frame of reference (see, e.g., eq.J1

Q
1(u0)E1,M1 \ F1

Q
1(u0)E1,M1 \ 0

[26] below). Second, we assume that the incident radiation from the photosphere is Ñat over the entire spectral range of the
radiative transition at the frequency (see ° 1.1), so we can additionally write This last assumption isu0 S

i
(u, kü ) \ d

i0S0(u0, kü ).
a safe one for the infrared spectral region, but it needs to be carefully checked when dealing with transitions in the visible,
where the line density in the photospheric spectrum and line depths are much larger than in the infrared. With these two
approximations, and also considering the normalization properties of the proÐles / and t, equations (22a) and (22b) become
more simply

(J1
Q
K)(u0)E1,M1 \

Q dkü
4n

T
Q
K(0, kü )E1,M1S0(u0, kü ) , (23a)

(F1
Q
K)(u0)E1,M1 \ 0 . (23b)

3.2. Irreducible Representation of the Radiative Rates
Following LA84 (cf. his eqs. [49]È[54]), and taking into account the no-coherence condition (10) and the Ñat-spectrum

approximation, equations (23a) and (23b), we Ðnd that the radiative rates governing the statistical equilibrium of the
multilevel atom are (the ordering symbols and in the following summations determine the energy ordering of the““p ÏÏ ““C ÏÏ
levels)

R
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The various Einstein B coefficients in the previous equations are given by

B(a
u
J
u
] a

l
J
l
)E1,M1 \ 4n3c2

+uauJu,alJl3 A(a
u
J
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J
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)E1,M1 , (25a)

B(a
l
J
l
] a

u
J
u
)E1,M1 \ 2J

u
] 1

2J
l
] 1

B(a
u
J
u
] a

l
J
l
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where the ordering of the levels is such that Of course, the radiative rates corresponding to transitions within aa
u
J
u
C a

l
J
l
.

given term a are also included in equations (24a)È(24f) for a@\ a.
We notice that the common 3-j symbol that appears in the expressions of the radiative rates R(2), R(3), R(5), and R(6) implies

that K ] K@] K@@ must be an even number. Therefore, it is evident that odd multipole orders of the density matrix (including
atomic orientation) cannot be generated from a state of natural excitation of the atom, unless the incident radiation Ðeld is
circularly polarized Analogously, even multipole orders of the density matrix (including atomic alignment)[(J1

Q
1)E1,M1 D 0].

are generated because of the anisotropy of the incident radiation Ðeld see eq. (30b) below]. The presence of[(J1
Q
2)E1,M1 D 0 ;

isotropic collisions does not change the substance of these conclusions. However, the degree of atomic polarization of a given
level (aJ), described by the ratios is determined by the relative importance between the radiative and collisionalo0K(aJ)/o00(aJ),
transition rates that contribute to the population of that level, and it is always lower than in the absence of collisions.

3.3. Magnetic Dependence of the Radiative Rates
It must be noticed that equations (24a)È(24f) contain no information on the Zeeman patterns of the transitions that

contribute to the radiative rates R(i), so the statistical equilibrium of the atom is insensitive to the magnetic-Ðeld strength. This
results essentially from the Ñatness of the incident radiation Ðeld over a frequency interval much larger than the transitionÏs
spectral range. If this assumption were not applicableÈin particular, if the spectral details of the incident radiation Ðeld were
of the order of the Zeeman splittingÈthe magnetic-Ðeld strength would play a role in the radiative rates associated with
radiation-ÐeldÈinduced processes, R(2), R(3), R(5), and R(6). (This can easily be seen, for instance, by replacing the proÐles / and
t in eqs. [22a] and [22b] by their Ðrst-order Taylor expansions analogous to eq. [12].) However, in that case the hypothesis
of complete redistribution would not apply.

Although the statistical equilibrium of the atom is independent of the magnetic-Ðeld strength, it is nonetheless sensitive to
the direction of the magnetic Ðeld. In fact, such dependence enters the radiative rates associated with radiation-ÐeldÈinduced
processes through the tensor components of the incident radiation Ðeld, which are expressed in the B frame. On the(J10K)E1,M1 ,
other hand, the incident radiation Ðeld from the photosphere takes a simpler form in the S frame deÐned previously, since it is
assumed that the incident radiation Ðeld possess cylindrical symmetry about the local vertical of the Sun at the observed
point. This symmetry property requires that in the S frame

[(J1
Q
K)E1,M1]S \ d

Q0[(J10K)E1,M1]S .

[To see this, one can consider a frame of reference S@ obtained from the S frame through a simple rotation of angle r about the
common of the two frames. Equation (7b) then reduces to If there is cylindrical symmetryx3-axis (T

Q
K)

S{
\ exp ([irQ)(T

Q
K)

S
.

about the then the frames S and S@ are undistinguishable, so Since r is arbitrary, the last identity canx3-axis, (T
Q
K)

S{
\ (T

Q
K)

S
.

be satisÐed only for Q\ 0.]
By analogy to equation (17), the tensor components of the incident radiation Ðeld in the B frame entering equations (24a) to

(24f) are related to those in the S frame by the expression

(J10K)E1,M1 \;
Q
D

Q0K (R)[(J1
Q
K)E1,M1]S

\D00K (R)[(J10K)E1,M1]S . (26)

The rotation matrices for K \ 0,1,2, are now real quantities (cf. eq. [18]) given byD00K (R),

d000 (Ë
B
) \ 1 , (27a)

d001 (Ë
B
) \ cos Ë

B
, (27b)

d002 (Ë
B
) \ 1

2
(3cos2 Ë

B
[ 1) . (27c)

Equation (26), together with equations (27a)È(27c), must then be substituted into the rates R(i) in order to express the
statistical-equilibrium equations in terms of the tensors of the incident radiation Ðeld in the S frame, and the quantity d002 (Ë

B
)
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then is responsible for the dependence on the direction of the magnetic Ðeld of the radiative rates associated with radiation-
ÐeldÈinduced processes. (Because of the assumption of unpolarized incident radiation Ðeld, the sum over K@@ implied by those
rates is restricted to the values K@@\ 0,2 only.) In particular, from equations (26) and (27c), we see at once that for cos2 Ë

B
\

(i.e., when is equal to the van Vleck angle the tensor component of the incident radiation Ðeld1/3 Ë
B

ËV B 54¡.74), (J102)E1,M1vanishes identically (see also eq. [30b] below). In that case, the atomic system becomes insensitive to the anisotropy of the
radiation Ðeld, and atomic alignment cannot be produced. Table 2 then illustrates the well-known result that the linear
polarization of the scattered radiation must vanish, to Ðrst order in the Taylor expansion of the line proÐle, for this particular
conÐguration of the magnetic Ðeld (e.g., 1974 ; House 1977 ; LA85).Sahal-Bre� chot

The quantities can be calculated through equation (23a), once the geometric tensors have been[(J10K)E1,M1]S T
Q
K(i, kü )E1,M1expressed in the S frame and the intensity of the incident radiation Ðeld from the photosphere has been speciÐed, i.e.,S0(k

ü )
once the limb-darkening function, (with k \ cos f, where f is the emergence angle of the incident radiation Ðeld ;S0(k)/S0(0)
see Fig. 4) has been given for the spectral region of interest (e.g., Allen 1973). If h denotes the height of the observed point
above the limb, the semiaperture of the cone of incident radiation from the photosphere at that point, and theË

M
R

_(average) solar radius, for a given incident direction referred to the S frame, we have (see Fig. 4)kü 4 (Ë, r)

S0(k
ü ) \ S0[k(Ë)] , (28)

k(Ë)\
A
1 [ sin2 Ë

sin2 Ë
M

B1@2
, sin Ë

M
\
A
1 ] h

R
_

B~1
, (29)

where in equation (28) we explicitly made use of the hypothesis of cylindrical symmetry of in the S frame. We then have,S0(k
ü )

in equations (24b), (24c), (24e), and (24f) (i.e., in the B frame), also taking into account equations (26) and (27a), (27b), and (27c),

J100 \ 1
2
P
0

’M
dË sin Ë S0[k(Ë)] , (30a)

J102 \ 1

8J2
(3 cos2 Ë

B
[ 1)

P
0

’M
dË sin Ë (3 cos2 Ë [ 1)S0[k(Ë)] . (30b)

We note that in the above equations we were able to drop the subscripts ““ E1 ÏÏ and ““M1 ÏÏ from the quantities (J10K)E1,M1,because in the case of unpolarized incident radiation Ðeld those are identical in the two cases of E1 and M1 transitions, as
demonstrated by equation (6).

From equations (30a) and (30b), we can easily calculate the anisotropy factor of the incident radiation Ðeld in the absence of
limb darkening,

J102
J100

\ 1

4J2
(3 cos2 Ë

B
[ 1)(1] cos Ë

M
) cos Ë

M
\

1

J2
. (31)

Taking into account realistic limb-darkening functions at various wavelengths in the visible and near-infrared (e.g., Allen
1973) brings a correction to the previous estimate of the anisotropy factor of only a few percent, the correction being more

FIG. 4.ÈGeometry construct for the determination of the radiation Ðeld in the S frame. The segment OH\ h gives the height of the observed point, O,
above the solar surface. The limb-darkening function is given for di†erent emergence angles f, in terms of which the polar angle of the incident radiation Ðeld
in O, Ë ½ (0, can easily be expressed.Ë

M
),
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important closer to the limb and in the visible. At a distance from the limb h \ 0.5 the anisotropy factor can be as large asR
_

,
46% (for so the contribution from atomic alignment to the intensity and circular polarization of the scatteredË

B
\ 0),

radiation can represent an important fraction of the population contribution. This is an important fact to consider in the
interpretation of the observed V -polarization signal to estimate the longitudinal magnetic Ðeld (see ° 4).

4. EXPLICIT FORMULAE FOR THE STOKES PARAMETERS OF THE SCATTERED RADIATION

Once the frequency and the Einstein coefficient for the spontaneous transition are given and the values of(a0 J) ] (a0 J0)(for K \ 0,2) are derived from the solution of the statistical-equilibrium equation (20), the four Stokes parameters ofo0K(a0 J)
the scattered radiation can be calculated directly from equations (14) and (16). In this section, the explicit formulae for the four
Stokes parameters of the scattered radiation will be derived in order to clarify their dependence on the di†erent diagnostic
quantities.

In order to simplify the notation, we introduce the population density of the excited level (see LA84, eq. [43] ; see also eq.
[3] in this paper),

Na0 J
\NJ2J ] 1 o00(a0 J) , (32)

the ““ reduced ÏÏ statistical tensor for that level (see LA84, eq. [39]),

p
Q
K(a0 J) \ o

Q
K(a0 J)

o00(a0 J)
, (33)

and the e†ective factor of the transition (e.g., Landi DeglÏInnocenti 1982),Lande� (a0 J)] (a0 J0)

g6 a0 J,a0 J0
\ 12 (ga0 J

] ga0 J0
) ] 14 (ga0 J

[ ga0 J0
)[J(J ] 1)[ J0(J0] 1)] . (34)

Since the orientation of the atomic system is negligible, we Ðnd, after some RacahÏs algebra,

e0(0)(u, kü )\ C
JJ0

/(u6 [ u)[1] D
JJ0

p02(a0 J)T02(0, kü )M1] , (35a)

e
i
(0)(u, kü )\ C

JJ0
/(u6 [ u)D

JJ0
p02(a0 J)T02(i, kü )M1 , (i \ 1, 2) (35b)

e3(1)(u, kü )\ [
S2

3
uLC

JJ0
/@(u6 [ u)[g6 a0 J,a0 J0

] E
JJ0

p02(a0 J)]T01(3, kü )M1 , (35c)

where3

C
JJ0

\ +u
4n

Na0 J
A(a0 J ] a0 J0)M1 , (36a)

D
JJ0

\ ([1)1`J`J0J3(2J ] 1)
4
5
6
0
0

1 1 2
J J J0

7
8
9
0
0 , (36b)

E
JJ0

\ 3J2J ] 1
3
([1)J~J0ga0 J

JJ(J ] 1)(2J ] 1)
4
5
6
0
0

1 2 1
J J J

7
8
9
0
0

4
5
6
0
0

1 1 1
J J J0

7
8
9
0
0

[ ga0 J0
JJ0(J0] 1)(2J0] 1)

4
5
6

0
0

1 2 1
J0 J 1
J0 J 1

7
8
9

0
0
4

. (36c)

The coefficients and of equations (36b) and (36c) can be given as functions of J or only, if we explicitly take intoD
JJ0

E
JJ0

J0account that o*J o\ 1 for all lines of interest. We then Ðnd, for andJ \ J0[ 1 J D 0,4

D
J,J`1 \ 1

J10

S J(2J [ 1)
(J ] 1)(2J ] 3)

, (37a)

E
J,J`1 \ 1

J5

S(2J [ 1)(2J ] 3)
J(J ] 1)

C
g6 a0 J,a0 J`1 [ ga0 J`1

6J(2J ] 3)[ 12
(2J ] 1)(2J ] 3)

D
, (37b)

3 The coefficient coincides with the symbol introduced in LA84, eq. (38), and conveniently tabulated for all possible transitions *J \ 0,^ 1, upD
JJ0

w
JJ0
(2)

to We should also notice that is proportional (by a factor to the coefficient g introduced in 1977, eq. (14).J \ J0\ 6. D
JJ0

p02(a0 J) 2J2) Sahal-Bre� chot
4 For J \ 0, the coefficients and vanish identically, as can be seen directly from eqs. (36b) and (36c). This is as expected, given that the level J \ 0D

JJ0
E
JJ0cannot be polarized.
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whereas, for J \J0 ] 1,

D
J0`1,J0 \ 1

J10

S(J0] 2)(2J0] 5)
(J0] 1)(2J0] 1)

, (38a)

E
J0`1,J0 \ 1

J5

S(2J0] 1)(2J0] 5)
(J0] 1)(J0] 2)

A
g6 a0 J0`1,a0 J0

[ ga0 J0
6J0

2J0] 1
B (38b)

From Table 1, the geometric tensors in equations (35a)È(35c) are given by

T02(0, kü )M1\ 1

2J2
(3 cos2 #

B
[ 1) , (39a)

T02(1, kü )M1\ 3

2J2
cos 2c

B
sin2 #

B
, (39b)

T02(2, kü )M1\ [ 3

2J2
sin 2c

B
sin2 #

B
, (39c)

T01(3, kü )M1\
S3

2
cos #

B
, (39d)

where we indicated with the inclination angle of the magnetic Ðeld on the LOS and with the position angle of the#
B

c
Breference direction for linear-polarization measurements in the B frame (see Fig. 5). Therefore, if the reference direction for

linear-polarization measurements is set parallel to the projection of the magnetic Ðeld onto the POS from(c
B
\ 0, n),

equations (39b) and (39c), and recalling equation (35b), we see that the U-polarization vanishes, whereas the Q-polarization
has the same sign of the ““ alignment factor,ÏÏ (For E1 transitions, the Q-polarization would showp02(a0 J) \o02(a0 J)/o00(a0 J).
the opposite sign in that case, as suggested by eq. [6] ; see also 1974, eq. [27].) This result was originally derivedSahal-Bre� chot
by Charvin (1965). If the sign of the alignment factor cannot be assessed a priori, the conditions Q[ 0 and U \ 0 determine
the direction of B in the POS with an ambiguity of 90¡.

If the contributions to equations (35a) and (35c) from atomic alignment (i.e., from the terms proportional to andD
JJ0

E
JJ0in those equations) are negligible, we easily Ðnd that the intensity and the circular-polarization proÐles of the scattered

FIG. 5.ÈGeometry of the magnetic Ðeld, B, and the propagation vector of the scattered radiation, k, relative to the local vertical of the Sun, Relativex3.geometry of the magnetic Ðeld, B, the propagation vector of the scattered radiation, k, and the local vertical of the Sun at the observed point (l.v.s.). The LOS,
coincident with k, is contained in the plane of the S frame [which has The angles and represent, respectively, the polar and azimuthalx1 x3 x34 (x3)S]. Ë

B
r
Bangles of the magnetic Ðeld in the S frame, whereas and are the corresponding angles in the frame of reference of the LOS [which has The#

B
'

B
x34 (x3)k].position angles c and determine the reference direction for linear-polarization measurements (r.d.l.p.), respectively, in the S frame and in the B frame [whichc

Bhas x34 (x3)B].
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radiation are related via the well-known ““magnetograph formula,ÏÏ

e3(1)(u, kü )\ g6 a0 J,a0 J0
uL cos #

B
d

du
e0(0)(u, kü ) . (40)

This property was originally proved by Landi DeglÏInnocenti (1982), in the application of resonance scattering in a magne-
tized plasma to the diagnostics of prominence magnetic Ðelds through the He I D3 line. In that case, in fact, the alignment
factor, was only of the order of 10~2, so the correction to equation (40) from atomic alignment could safely bep02(a0 J),
neglected.

In general, from equations (35a) and (35c), we see that equation (40) is modiÐed by the presence of an additional factor

i 4
1 ] E

JJ0
p02(a0 J)/g6 a0 J,a0 J0

1 ] [1/(2J2)]D
JJ0

p02(a0 J)(3cos2 #
B
[ 1)

. (41)

For the transition 1 ] 0, the alignment factor can be as large as the anisotropy factor of the incident radiation Ðeld (in the
approximation of a two-level atom and in the collisionless regime ; cf. LA84, eq. [61] and Table 1). In that case, from
equations (38a) and (38b), we have and so the deviation from the magnetograph regime ofD10\ 1 E10 \ (1/J2)g6 a0 1,a0 0,equation (40), as represented by the factor i, can be important, depending on the inclination angles of the magnetic Ðeld on
the LOS and on the of the S frame, and respectively, and also on the distance of the observed point from thex3-axis #

B
Ë
B
,

solar limb, h (cf. eq. [31]). As a typical example, for Ë \ 90¡, and h \ 0.5 which give an anisotropy(Ë
B
, r

B
) 4 (30¡,0¡), R

_
,

factor of 29%, we Ðnd i B 1.23 for the transition 1 ] 0, giving a deviation of 23% from the magnetograph regime. For vertical
magnetic Ðeld, and for h ] O, the anisotropy factor takes its maximum value of In such a limiting case, and forË

B
\ 0¡, 1/J2.

the same transition 1 ] 0, the maximum value of i \ 2 (i.e., a 100% correction to the magnetograph formula) is attained in
the limit of vanishing longitudinal Ðelds, #

B
\ 90¡.

Note that the contribution from isotropic collisions and cascade processes to the population of the excited level reduces the
alignment factor with respect to the maximum possible value that is found in the ideal case of purely radiative excitation from
the lower level. Therefore, although the alignment factor is less than unity, it can change substantially depending on the
particle density and height in the corona and on the particular line considered, thus complicating the interpretation of the V
proÐle as a diagnostic of Ðeld strength in the corona.

Finally, we want to determine expressions for the emission coefficients in the S frame, which is the most convenient if we are
interested in the synthesis of Stokes proÐles of coronal lines forming within prescribed magnetic-Ðeld conÐgurations. As
customary, we choose the S frame so that the LOS, is contained in the plane and we adopt as reference direction forkü , x1 x3,linear-polarization measurements the direction perpendicular to the limb. According to Figure 1, such a choice implies r\ 0
and c\ 0, bringing a sensible simpliÐcation to the expressions of the geometric tensors in the S frame, [T

Q
K(i, kü )M1]S.The components and of equations (39a) and (39d) are easily expressed in the S frame through theT02(0, kü )M1 T01(3, kü )M1““ cosine ÏÏ formula of spherical trigonometry (see Fig. 5),

cos #
B
\ cos Ë cos Ë

B
] sin Ë sin Ë

B
cos r

B
. (42)

The expressions in the S frame of the components and of equations (39b) and (39c) are instead moreT02(1, kü )M1 T02(2, kü )M1easily determined if we explicitly use the transformation property (17). After some tedious algebra, we Ðnd, for Q and U
polarizations, respectively,

T02(1, kü )M1\ ;
Q
D

Q02 (R)[T
Q
2(1, kü )M1]S

\ 3

J2

C
sin2 Ë

B
sin2 r

B
[ 1

2
(1[ cos2 #

B
)
D

, (43a)

T02(2, kü )M1\ ;
Q
D

Q02 (R)[T
Q
2(2, kü )M1]S

\ 3

J2
sin Ë

B
sin r

B
sin #

B
cos (n [ '

B
) , (43b)

where we indicated with the azimuthal angle of B in the frame of reference of the LOS (see Fig. 5 ; from the Ðgure, we also'
Bsee that c\ 0 implies In writing equation (43b), we made use of another fundamental formula of sphericalc

B
\ n[ '

B
).

trigonometry (see Fig. 5),

sin #
B

cos (n [ '
B
) \ sin Ë cos Ë

B
[ cos Ë sin Ë

B
cos r

B
. (44)

By means of equations (42) and (44), the geometric tensors in the emission coefficients of equations (35a)È(35c) can be
expressed as functions of the various angular parameters referred to the particular S frame adopted here.

5. DISCUSSION AND CONCLUSIONS

In this paper we reviewed the theory of formation of optically thin, M1 coronal lines in the presence of magnetic Ðelds. A
consistent treatment of all four Stokes parameters, I, Q, U, and V , of the scattered radiation was provided, extending previous
work from di†erent authors on this problem (e.g., 1974, 1977 ; House 1977).Sahal-Bre� chot
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Our treatment was based on the nonrelativistic quantum theory of line formation in a magnetized medium, put forward by
Landi DeglÏInnocenti (1983, 1984, 1985), which provides a very compact and powerful formalism (implementing the irreduc-
ible representation of spherical tensors) for the study of line-polarization problems, under the hypothesis of complete
redistribution in frequency. Through this formalism, previous results on the linear polarization of coronal lines are easily
rederived, whereas the new results on circular polarization presented in this paper are arrived at with relatively little e†ort.

The physical regimes of temperatures and magnetic intensities that are considered in this paper can be summarized by the
following sequence of inequalities,

ufs? *uD ? uL? AM1 , (45)

where is the typical Ðne-structure separation in the ground term of the investigated ion, is the typical Doppler widthufs *uDfor the lines of interest v being a typical thermal speed in the corona], is the Larmor frequency for the[*uD D (v/c)ufs, uLmagnetic intensities that are typical of the solar corona, and Ðnally is the typical Einstein coefficient for spontaneousAM1de-excitation for the lines of interest. Because we were able to neglect quantum coherences in the groundufs? uL? AM1,term (higher terms are naturally populated and depopulated by isotropic collisional and radiative processes ; see ° 2.2).
Because we were able to approximate the line-broadening proÐle through its Ðrst-order Taylor expansion in*uD ? uL, uL(see ° 2.3). Through this Ðrst-order approximation of the line proÐle, the magnetic-Ðeld strength is naturally introduced into
the problem of coronal-line polarization, allowing for diagnosis of the magnetic-Ðeld intensities in the solar corona. In
contrast, these magnetic, Ðrst-order e†ects were always neglected in previous work on the formation theory of coronal lines,
so only the problem of the orientation of the magnetic Ðeld on the POS could be addressed.

We found that the consistent treatment of all four Stokes parameters in the investigation of the resonance scattering of the
photospheric radiation, for the regimes of temperatures and magnetic intensities described by equation (45), leads to a
generalization of the well-known ““magnetograph formula, ÏÏ equation (40), relating the observed V proÐle to the frequency
derivative of the intensity, I. The correction to the standard magnetograph formula is determined by the presence of atomic
polarizationÈinduced by the anisotropy of the incident radiation Ðeld and evaluated by the alignment factor of the excited
level, is included in the magnetograph formula through an additional factor i, ranging between 2/3 and 2 (forp02(a0 J)Èand
the two-level atom 1È0, in the absence of collisions) as a function of atomic alignment and magnetic-Ðeld geometry (see eq.
[41], and discussion thereafter). Since atomic alignment can be large in the solar corona, depending on the height of the
observed point over the limb and on the inclination of the magnetic Ðeld on the local vertical of the Sun at the observed point,
we warn against a ““ blind ÏÏ use of the standard magnetograph formula for the interpretation of the observed V signal as a
direct diagnostic of the longitudinal magnetic Ðeld that simply ignores the possible deviations from the magnetograph regime
of equation (40) determined by atomic polarization. The presence of isotropic collisions and cascade processes tends to reduce
the alignment of the excited level, thus decreasing the relative importance of the correction to the magnetograph formula.
While such depolarizing e†ects need to be considered individually for each line of interest and will be investigated in future
papers of this series, the work of Judge (1998 ; speciÐcally the lower panel of Fig. 1) can be used to indicate the likely
magnitude of such e†ects. Certain lines (e.g., Fe XIII j10747) have strong contributions to the intensity from radiative
excitation for all heights in the corona and can potentially be expected to be strongly inÑuenced by atomic alignment. Other
lines (e.g., Si IX 3.934 km) having large contributions from collisions low in the corona (below h D 0.4 are expected to beR

_
)

less a†ected by atomic alignment, at least at low heights.
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