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Background

 Evidence for solar
Influence on climate difficult
to explain by small
variations in total solar
radiative output.

e UV variations
(fractionally) much larger.
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Background:
Solar cycle variation in spectral irradiance
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Haigh (Nature, 1994)
Solar irradiance reaching lower atmosphere depends on zenith
angle and on response in stratospheric ozone.



Solar forcing of climate: radiative mechanisms

“Top-down” via UV heating the stratosphere

and/or

“Bottom-up” via (visible) radiation warming surface ?
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Outline

e Impact of solar variability on wind and circulation of
troposphere: observations and models.

 Mechanism proposed via UV heating of
stratosphere and dynamical coupling.

« Unusual behaviour of solar spectrum over
declining phase of solar cycle 23.

* Implications for stratospheric composition and
solar forcing of climate.
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Temperature changes over the 11-year solar cycle

e Non-uniform.
« Warming in equatorial stratosphere, less towards the poles.
« Bands of warming in mid-latitudes.

Multiple regression analysis of zonal mean temperature1979-2000
Haigh (Phil Trans, 2003)
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Temperature in NW Europe

NB not global ——3  WINTER SEVERITY IN
LONDON AND PARIS
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Signals in surface air temperature
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Winter land surface air temperature and pressure

Lockwood et al. (ERL, 2010)
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Solar cycle signal in westerly wind (observed)

NCEP zonal mean zonal wind (m/s)
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Solar signal in zonal wind: obs cf climate model

GCM response to changes in

Observations solar radiation & O,
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Study using a simplified climate model

e Uses “Intermediate GCM”
— full dynamics but highly simplified physics
(so can try out ideas and do many runs cheaply)
— no orography
(so no planetary scale waves but still synoptic scale
waves)

* Apply simplistic heating perturbation to the stratosphere:

I 0K -

[ _ Haigh, Blackburn & Day (2005)
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Heating applied ONLY in the stratosphere:

Observations of solar impact zonal wind  Simple model

Run C
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Evolution of zonal wind response 11-day running means
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Mean circulation of the tropical atmosphere:
the Hadley cell
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Waves in the atmosphere

Contours: surface
pressure (mb)

Colours: temperature
of lowest 5.5km

(approx)
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Simple model equatorial heating (E5) results:

Mean meridional circulation Horiz. wave momentum flux Horiz. wave heat flux
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Outline of mechanism:

Solar UV heats the
stratosphere

Temperature gradients
altered

L

Accelerations to zonal
wind near tropopause

Changes In fluxes of
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Summary: Part |

(Solar) heating of the lower stratosphere produces
changes In tropospheric circulation.

Tropical heating produces a weakening and
poleward shifts of the jets and a weakening and
expansion of the Hadley cells.

This results from the impact on the momentum
budget of a feedback between vertically
propagating, synoptic-scale waves and the mean
flow.

Crucially dependent on magnitude and location of
stratospheric heating.



Solar spectra: differences 2004-2007
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2D model temperature differences (K) 2004-2007

Lean SIM
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2D model O, differences (%) 2004-2007

Lean SIM
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Photodissociation
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J,: O, Photodissociation rate

2004 — 2007 (%)
Lean SIM

x. altitude (km)
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OH
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Produced by reaction of H,O with O(:D)
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O, production and destruction rates

a) combination O+0O,
b) catalytic destruction by HO,
c) catalytic destruction by NO,
d) production by photodissociation of O,
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Multiple regression of AURA MLS O, data

zone_SIM2004—-SIM2007

Regions chosen based on model results
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Multiple regression of AURA MLS O, data

O3 anom (%) & reg. fit

O3 anom (%) & reg. fit
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Integrated radiative fluxes 2004-2007
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Solar Radiative Forcing of Climate*
2004-2007 (MW m->2)
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Global surface
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Solar forcing of climate: current understanding

“Top-down” via UV heating the stratosphere
New solar data would make much larger
and/or

“Bottom-up” via visible radiation warming surface ?

New solar data would invert
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Summary. Part 2

* Inputto 2D model SIM (& SOLSTICE) spectra produce a very
different response in O5; from semi-empirical models of SSI: a
reduction in lower mesosphere at higher solar activity and a large
Increase in mid- to upper stratosphere.

» This structure can be explained by enhanced production of HO,,
and by a shift of O, from O to O.

e This structure is not inconsistent with contemporaneous
measurements of O5; from AURA-MLS.

 SIM data would suggest that solar radiative forcing of climate
produced a warming from 2004 to 2007, despite declining TSI.

e Isthe Sun behaving oddly at present? Has this happened before?
| What will the Sun do over the next few years...?
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Choice of spectra A <240 nm
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