Calibration of Sunspot Numbers

Leif Svalgaard
Stanford University

leif@leif.org
Eddy Symposium 22 Oct. 2010
Waldmeier’s Description of What he Believed was the Counting Method

CHANGES TO THE COUNTING METHOD

Since Rudolph Wolf began the sunspot measurement, he set the standard. And although he counted each spot regardless of its size, he failed to include those smallest spots visible only under a stable atmosphere. Around 1882 Wolf's successors permanently changed the counting method in two ways to compensate for the large variation in spot size:

(1) by including the smallest spots visible under an atmosphere of constant transparency and

(2) by weighting spots with penumbrae according to their size and umbral structure.

Waldmeier, 1961

I believe (2) is incorrect, having read all Wolfer's [and Brunner's] papers and not found any such description. Waldmeier may have believed that the spots were weighted by size and carried that belief into his count.
Waldmeier’s Own Description of his [?] Counting Method

Hofflecken handelte. Später wurden den Flecken entsprechend ihrer Größe Gewichte erteilt: Ein punktförmiger Fleck wird einfach gezählt, ein größerer, jedoch nicht mit Penumbra versehener Fleck erhält das statistische Gewicht 2, ein kleiner Hoffleck 3, ein größerer 5. Die Gruppen- und Fleckenzahlen nach der neuen Zählart seien g und f. Die daraus abgeleite-

Can we see this in the Historical Record?
This is still the basis for the SSN

<table>
<thead>
<tr>
<th>Group #</th>
<th>Weighted count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83</td>
</tr>
<tr>
<td>2</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
</tr>
</tbody>
</table>

Has been observing 50+ years

Locarno is the Reference station for SIDC

2003-10-30

2010-8-27 2010-9-13 2010-4-22
Wolf’s Discovery: \(rD = a + b \, R_W \)

\[Y = H \sin(D) \]
\[dY = H \cos(D) \, dD \quad \text{for small } dD \]

A current system in the ionosphere is created and maintained by solar FUV radiation.

Wolf realized that this relation can be used to check the sunspot calibration.
The clear solar cycle variation of rY

All mid-latitude stations show the same variation, responding to the same current system.

This was Wolf's justification for his calibration of the SSN.
Using rY from nine ‘chains’ of stations we find that the correlation between $F10.7$ and rY is extremely good (more than 98% of the variation is accounted for).

This establishes that Wolf’s procedure and calibration are physically sound.
The diurnal range rY is thus an extremely good proxy for the F10.7 radio flux and [presumably] for ‘solar activity’ in general.

Here is the response at Helsinki and at its replacement station Nurmijärvi.

Note, that activity in the 1840s-1870s was similar to that in the 1970s-2000s
The Waldmeier Discontinuity, I

- Waldmeier's counts are 22% higher than Wolfer and Brunner's, for the same amplitude of the Diurnal Geomagnetic Variation.

![Graph showing the relationship between Sunspot Number as a Function of Range of East Component and the ratio of slopes.](image-url)
The Waldmeier Discontinuity, II

A linear relation going through the origin allows us to calculate the ratio between the [linearized] sunspot area $SA^{0.775}$ and the sunspot number. We show here the ratio for each observer and histograms of the distributions of the ratios:

Assuming that the sunspot areas were not affected by Waldmeier taking over, the ratios indicate an increase of Rz of $3.39/2.88 = 17.5\%$
The Group Sunspot Number R_G is derived from the RGO data after ~1874, so should show the same discontinuity, and it does:

Note, that I plot the inverse ratio, thus R_Z after 1945 is about 20% too high

I’ll come back to this discontinuity a bit later …
The Waldmeier Discontinuity, III

- From ~40,000 CaK spectroheliograms from the 60-foot tower at Mount Wilson between 1915 and 1985 a daily index of the fractional area of the visible solar disk occupied by plages and active network has been constructed [Bertello et al., 2008]. Monthly averages of this index is strongly correlated with the sunspot number. The relationship is not linear, but can be represented by the following equation:

\[R = [(\text{CaK} - 0.002167) \times 8999]^{1.29} \]

using data from 1910-1945, i.e. the pre-Waldmeier era.

The SSN observed by Waldmeier is 20% higher than that calculated from CaK using the pre-Waldmeier relation.
The value of the Ionospheric Critical Frequency $f_{o}F_2$ depends strongly on solar activity. The slope of the correlation changed 20% between sunspot cycle 17 and 18 when Waldmeier took over.

![Graph showing variation of twelve-month running-average $f_{o}F_2$ at Washington, D.C., with twelve-month running-average sunspot number.](image-url)
If we accept the fidelity of the RGO sunspot observations [at least for a few decades around 1945] we must ascribe the artificial increase of Rz after 1945 to Waldmeier’s inexperience [Friedli, 2005] as he struggled with learning how to construct the sunspot number [introducing the weights?]. Subsequent observers have strived to match Waldmeier, so in order to remove the 1945 discontinuity [and be consistent with modern counts] we must increase the pre-1945 Rz by ~20%:

This, of course, just makes the discrepancy with the Group Spot Number worse [<Rz> ~ 1.4 <Rg> before 1875].
Wolf himself was not afraid of such wholesale adjustments.
Rudolf Wolf’s ‘Relative’ Sunspot Number values change over time...

Wolf started his own observations in 1849

From MNRAS, 1861 and from the current dataset at SIDC in Brussels
Even GSN has been ‘adjusted’
The Group Sunspot Number R_G is derived from the RGO data after ~1874.

Note, that I plot the inverse ratio, thus R_G before ~1880 is about 40% too low.

I’m back at this discontinuity as promised…
Adolf Schmidt [~1900] had analyzed the data for two intervals on either side of the start [1875] of the RGO sunspot observations for several stations and determined the diurnal ranges:

<table>
<thead>
<tr>
<th>obs</th>
<th>name</th>
<th>lat</th>
<th>long</th>
<th>interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDC</td>
<td>Washington D.C.</td>
<td>38.9</td>
<td>283.0</td>
<td>1840-1842</td>
</tr>
<tr>
<td>DUB</td>
<td>Dublin</td>
<td>53.4</td>
<td>353.7</td>
<td>1840-1843</td>
</tr>
<tr>
<td>MNH</td>
<td>Munchen</td>
<td>48.2</td>
<td>11.6</td>
<td>1841-1842</td>
</tr>
<tr>
<td>PGC</td>
<td>Philadelphia</td>
<td>40.0</td>
<td>284.8</td>
<td>1840-1845</td>
</tr>
<tr>
<td>SPE</td>
<td>St. Peterburg</td>
<td>60.0</td>
<td>30.3</td>
<td>1841-1845</td>
</tr>
<tr>
<td>GRW</td>
<td>Greenwich</td>
<td>51.5</td>
<td>0.0</td>
<td>1841-1847</td>
</tr>
<tr>
<td>PRA</td>
<td>Praha</td>
<td>50.1</td>
<td>14.4</td>
<td>1840-1849</td>
</tr>
<tr>
<td>HBT</td>
<td>Hobarton</td>
<td>-42.9</td>
<td>147.5</td>
<td>1841-1848</td>
</tr>
<tr>
<td>MAK</td>
<td>Makerstoun</td>
<td>55.6</td>
<td>357.5</td>
<td>1843-1846</td>
</tr>
<tr>
<td>KRE</td>
<td>Kremsmunster</td>
<td>48.1</td>
<td>14.1</td>
<td>1839-1850</td>
</tr>
<tr>
<td>TOR</td>
<td>Toronto</td>
<td>43.7</td>
<td>280.6</td>
<td>1842-1848</td>
</tr>
<tr>
<td>WLH</td>
<td>Wilhelmshaven</td>
<td>53.7</td>
<td>7.8</td>
<td>1883-1883</td>
</tr>
<tr>
<td>GRW</td>
<td>Greenwich</td>
<td>51.5</td>
<td>0.0</td>
<td>1883-1889</td>
</tr>
<tr>
<td>WDC</td>
<td>Washington D.C.</td>
<td>38.9</td>
<td>283.0</td>
<td>1891-1891</td>
</tr>
<tr>
<td>PSM</td>
<td>Parc Saint-Maur</td>
<td>48.8</td>
<td>0.2</td>
<td>1883-1899</td>
</tr>
<tr>
<td>POT</td>
<td>Potsdam</td>
<td>52.4</td>
<td>13.1</td>
<td>1890-1899</td>
</tr>
<tr>
<td>COP</td>
<td>Kobenhavn</td>
<td>55.7</td>
<td>12.6</td>
<td>1892-1898</td>
</tr>
<tr>
<td>UTR</td>
<td>Utrecht</td>
<td>52.1</td>
<td>5.1</td>
<td>1893-1898</td>
</tr>
<tr>
<td>IRT</td>
<td>Irkutsk</td>
<td>52.3</td>
<td>104.3</td>
<td>1899-1899</td>
</tr>
</tbody>
</table>
For each station we now compute the average \(<R_z> \), \(<R_g> \), and diurnal range [converted to force units, nT, from arc minutes] and plot \(<R_z> \) against the range \(<r_Y> \) [blue diamonds, left]. You can see Wolf’s linear relationship in action. For the eight stations with data after 1880, the \(<R_g> \)s are also plotted [pink dots] and they match the \(<R_z> \) points reasonably well.

This is, however, not the case for the eleven stations from 1850 and before. Their \(<R_g> \) [red diamonds] lie well below the fitted line. To make them fit it suffices to multiply their values by 1.4 [giving red open diamonds].

The Discontinuity in the 1880s between \(R_G \) and \(R_Z \) explained and resolved
Waldmeier [1971] already noticed that the tight correlation between the solar microwave flux F10.7 and the sunspot number could be used as a calibration tool. Waldmeier: “As long as this relation holds, the Zürich series of sunspot-numbers may be considered to be homogeneous. If this relation should be subject to changes in the time to come, then the reduction factor used hitherto ought to be changed in such a way that the old R-F relation is reestablished”
The change in relationship is perhaps clearer in monthly values

We know that the F10.7 measurements themselves [which are absolute flux values] have not changed because of the agreement between Canadian [since 1947] and Japanese [since 1951] measurements.
Comparing Observed and Synthetic SSN from F10.7

Monthly Averages when SSN > 4

The growing discrepancy could be due to a drift in the SIDC calibration or to a real change in the Sun, or both! Waldmeier did not consider the possibility of a solar change…

Do we?
Some other organizations that have kept a keen eye on the Sun, making their own sunspot number series:

http://www.vds-sonne.de/gem/res/results.html
SIDC: Solar Influences Data Analysis Center, Brussels
 (International sunspot numbers)
SONNE prov.: SONNE network, provisional sunspot numbers
SONNE def.: SONNE network, definitive sunspot numbers
AAVSO: American Association of Variable Star Observers - Solar Division
AKS: Arbeitskreis Sonne des Kulturbundes e.V., Germany
BAA: The British Astronomical Association - Solar Section, UK
GFOES: G.F.O.E.S. Commission "Nombre de Wolf", France
GSRSI: GruppoSole Ricerce Solari Italia, Italy
OAA: The Oriental Astronomical Association - Solar Division, Japan
RWG: Rudolf Wolf Gesellschaft - Solar Obs. Group of Swiss Astron. Society
TOS: Towarzystwo Obserwatorow Slonca - Solar Observers Society, Poland
VVS: Vereniging voor Sterrenkunde, Werkgroep Zon, Belgium
All these series can be successfully scaled to SIDC before ~2001

But the same scaling relation yields a sunspot number after that time that is systematically 12% higher than SIDC’s. Did all these organizations somehow change their procedures and/or observer cadre? Or did SIDC?
It seems that we increasingly see ‘fewer spots’ for the same amount of microwave flux. We can quantify that by the ratio between observed spots and expected spots from the pre-1991 relationship:

![Graph showing the ratio of observed sunspot number to simulated SSN.](image)

Adding 12% [assuming that SIDC has a problem from ~2001] does not materially alter this conclusion (red crosses).
Conclusions

• The current sunspot number is not correctly calibrated. SIDC ‘undercounts’ since 2001
• Waldmeier introduced an artificial upwards jump ~1945
• The Group Sunspot Number is too low before ~1880. There is no long-term change in the SSN since 1700. No ‘Modern Grand Maximum’
• Sunspots are becoming harder to see and may become effectively ‘invisible’ in a few years