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ABSTRACT

There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active
regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD)
numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux
emergence can generate a substantial net current in ARs. Other sources of AR currents are photospheric horizontal
flows. Our aim is to determine the conditions for the occurrence of net versus neutralized currents with this second
mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting
and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both direct and
return currents, (2) induce very weak compression currents—not observed in 2.5D—in the ambient field present in
the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current.
We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the
photospheric polarity inversion line—a special condition that is rarely observed. We conclude that photospheric
flows,as magnetic flux emergence, can build up net currents in the solar atmosphere, in agreement with recent
observations. These results thus provide support for eruption models based on pre-eruption magnetic fields that
possess a net coronal current.
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1. INTRODUCTION

Current-carrying magnetic fields are an essential ingredient
for the generation of flares and coronal mass ejections (CMEs)
in the solar atmosphere (e.g., Rust et al. 1994; Schrijver
et al. 2005; Shibata & Magara 2011; Aulanier et al. 2014).
Indeed, such non-potential magnetic fields store the free
magnetic energy that powers these phenomena. What remains
controversial, though, is whether and how a net electric current,
here meant to be non-zero if integrated over one photospheric
magnetic polarity, is formed in the source regions of these
phenomena.

These questions arise from different theoretical arguments
according to which electric currents should or should not be
neutralized in active regions (ARs; e.g., Melrose 1991;
Parker 1996). The answer to these questions may have critical
consequences for several theoretical flare and CME models, as
well as for pre-eruptive magnetic fields, developed from
magnetic configurations containing a net current (e.g.,
Low 1977; van Tend & Kuperus 1978; Martens 1987; Titov
& Démoulin 1999; Kliem & Török 2006; Démoulin &
Aulanier 2010). Indeed, full neutralization implies that there
is no net current in an AR. In these circumstances, Forbes
(2010) pointed out that the eruption mechanism of these
models may be inhibited. Their relevance may therefore be
questioned if ARs currents are in fact neutralized.

The question of current neutralization in ARs derives from
the fact that the current flowing in isolated, confined magnetic
flux tubes consists of two parts: the so-called direct and return
currents (Melrose 1991; Parker 1996). In magnetohydrody-
namics (MHD), the direct (or main) currents refer to the electric
currents that are expected from the chirality of a twisted/
sheared magnetic flux tube. For a flux rope, the direct currents

are flowing in the central part of the twisted flux tube while the
return currents are flowing around them (e.g., see Figure 3 of
Melrose 1991). These return currents shield the ambient
magnetic field from the direct currents.
AR currents are believed to be built up by two main

mechanisms: (1) the emergence of current-carrying magnetic
flux tubes from the solar convection zone (CZ) into the corona
(e.g., Leka et al. 1996; Moreno-Insertis 1997; Longcope &
Welsch 2000; Cheung & Isobe 2014), and (2) the stressing of
the coronal magnetic field by sub-photospheric and photo-
spheric horizontal flows (e.g., McClymont & Fisher 1989;
Melrose 1991; Klimchuk & Sturrock 1992; Török &
Kliem 2003; Aulanier et al. 2010).
It has been argued that both mechanisms should in principle

produce neutralized currents. Mechanism (1) is believed to be
associated with the rising through the CZ of confined magnetic
flux tubes (e.g., Parker 1955; Fan 2009). For instance, let us
consider the simplified case of a twisted flux tube carrying an
electric current, I, in cylindrical geometry. The confinement of
the flux tube to a finite cross section of radius, R, requires that
the total current it carries must vanish for r R> (see
Appendix A). Such a twisted flux tube possesses a non-zero
internal current density, j. Therefore, the flux tube must
contain a second type of current that neutralizes the core/direct
currents, i.e., one that has the same total strength but flows in
the opposite direction (and is often assumed to be a surface
current). Based on the simplified assumption of the full
emergence of confined magnetic flux tubes, one may then
expect that mechanism (1) would transport neutralized
currents into the solar corona, thus generating a current-
neutralized AR. As for mechanism (2), localized (sub)-
photospheric horizontal flows transfer twist and shear to the
magnetic field in a finite coronal volume. This field will
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typically inflate, which will also induce currents in the ambient
magnetic field through compression. Since the (sub)-photo-
spheric driving volume is finite, one may expect that the
changes in the coronal field would also remain restricted to a
finite volume. If true, a complete shielding of the generated
currents, i.e., neutralized currents, would be implied.

Observationally, the normal/vertical component of the
electric current density, jz, can be derived by applying
Ampère’s law to photospheric vector-magnetograms (see
Equation (4)). Despite the various uncertainties and difficulties,
the measurements of photospheric transverse magnetic fields
are becoming more and more reliable (e.g., Leka et al. 1996;
Metcalf et al. 2006; Wiegelmann et al. 2006; Gosain
et al. 2014). For this reason, increasing attention has been
paid to deriving the properties of currents in solar ARs, and to
testing their degree of neutralization (e.g., Wilkinson
et al. 1992; Leka & Skumanich 1999; Venkatakrishnan &
Tiwari 2009; Sun et al. 2012). Some recent observational
studies report the presence of direct and return currents in each
magnetic polarity of an AR (e.g., Wheatland 2000; Ravindra
et al. 2011; Georgoulis et al. 2012; Gosain et al. 2014). These
studies find both types of ARs, i.e., some with neutralized
currents, and some with a net current.

The indications for the existence of ARs with a net current
are at variance with theoretical arguments invoked in favor of
current neutralization. Considering their past and present
limitations, the relevance of the observational measurements
has thus been questioned (e.g., Parker 1996; see also the
introduction of Georgoulis et al. 2012). On the other hand, the
arguments in favor of current neutralization may well be
oversimplified. For instance, they usually do not consider the
possible effects that become relevant in a fully three-
dimensional (3D) geometry or in the case of partial magnetic
flux emergence. This has thus led to a long-lasting debate about
whether or not a net current can exist in ARs (see, e.g.,
Melrose 1991, 1995; Parker 1996).

Numerical MHD simulations provide a useful alternative for
addressing this problem. However, the neutralization of electric
currents has barely been analyzed with this tool. A few MHD
simulations reported the presence of both direct and return
currents generated by photospheric line-tied motions applied to
initially potential coronal fields (e.g., Aulanier et al. 2005;
Delannée et al. 2008). Yet, only Török & Kliem (2003)
quantified the associated degree of current neutralization. For
the case of a twisted flux tube, they found that the
neutralization only occurs when the photospheric motions do
not extend to the polarity inversion line (PIL), so that no
magnetic shear is built up at the initially unsheared PIL.

Török et al. (2014) were the first to revisit the question of
current neutralization by means of 3D MHD simulations of
magnetic flux emergence. In their experiment, the authors
modeled the emergence of a buoyant magnetic flux rope into a
stratified, plane-parallel atmosphere in hydrostatic equilibrium
(see Leake et al. 2013). For that purpose, a sub-photospheric
magnetic flux rope containing neutralized currents was
considered. It was found that a complex redistribution of the
initially sub-photospheric direct and return currents occurs in
the vicinity of the photosphere. This subtle redistribution
mainly led to the emergence of the initial direct currents (see
Figure 3(b) of Török et al. 2014), causing the development of a
strong net current in the corona. This net current was associated
with the development of a strong magnetic shear along the PIL,

and some non-force-free return currents (see Figure 5 of Török
et al. 2014). These results indicate that the emergence of a
current-neutralized magnetic flux tube can lead to the
generation of a net current in ARs, as suggested by Longcope
& Welsch (2000).
In the present study, we pursue the work initiated by Török

et al. (2014), analyzing the distribution and neutralization of
currents generated by photospheric horizontal flows. We
perform a parametric analysis of 3D, zero-β, MHD simulations
of photospheric twisting and shearing motions imposed on a
bipolar potential field. Section 2 describes the main setup of our
numerical models. The results of our parametric study are
presented in Section 3 for the twisting motions and in Section 4
for the shearing ones. A discussion and interpretation of our
results is provided in Section 5. Our conclusions are
summarized in Section 6.

2. NUMERICAL MODEL

2.1. Equations, Numerical Scheme, and Boundary Conditions

The numerical simulations described in this paper were
performed in Cartesian geometry, using the Observationally
Driven High-order Scheme Magnetohydrodynamic code
(OHM; see Aulanier et al. 2005). We use the code in its
zero-β version in which the mass density, ρ, the fluid velocity,
u, and the magnetic field, B, are advanced in time according to

u
t

, 1· ( ) ( )r
r¶

¶
= -

u
u u B B u

t
, 20( · ) ( ) ( ) ˜ ˜ ( ) m r n¶

¶
= - + ´ ´ + D

B
u B B

t
, 3( ) ( ) h

¶
¶

= ´ ´ + D

where ñ and η are diffusion coefficients. ñ is a pseudo-
viscosity, and η is the electrical resistivity. These diffusion
coefficients are used to limit the development of sharp
discontinuities that may develop at the scale of the mesh and
lead to quickly growing numerical instabilities (see Aulanier
et al. 2005; Janvier et al. 2013). The solenoidal condition
( B 0· = ; a discussion on its very weak magnitude is
provided in Appendix B) and the current density are not
calculated in the code. The latter is derived from Ampère’s law

j B
1

. 4
0

( )
m

= ´

Equations (1)–(3) are solved in non-dimensionalized units,
using 10m = . The velocities are expressed in units of the
initially uniform Alfvén speed, c t 0 1A ( )= = . The time unit is
given by the Alfvén time, tA = 1, which corresponds to the
travel time of an Alfvén wave over a distance d = 1. The
diffusion coefficients are prescribed in terms of uniform
characteristic speeds, uñ and uh, such that u li j k, ,˜ ˜n = n and

u li j k, ,h = h , where li j k, , is the smallest grid-spacing at a point
x y z; ;i j k( ). For all simulations, we set u c t15% 0A ( )˜ = =n and

u c t1.5% 0A ( )= =h in the coronal volume (the diffusion
parameters are set to zero at the photospheric line-tied
boundary).
All simulations are performed in the same domain covering

x y z 9.1, 9.1 0, 302[ ] [ ]´ ´ » - ´ , discretized on an non-
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structured mesh of n n n 231x y z
3´ ´ = points. In the sub-

domain x y 1.5, 1.5 2[ ]´ = - , the mesh is set as uniform along
the x and y directions, with mesh intervals d d 0.02x y

min min= = .
This choice allows us to employ the higher-mesh resolution in
the region where the strongest gradients of electric currents are
generated. Outside of this region, the mesh is non-uniform in
both the x and y directions, with mesh intervals defined such
that d d d d 1.091x

i
x
i

y
j

y
j1 1= =+ + . The mesh is non-uniform all

along the z direction, with mesh intervals defined by
d d 1.013z

k
z
k1 =+ and d 0.02z

min = . With these settings, the
largest mesh intervals are d 0.41z

max = along z and d 0.65x y,
max =

along both the x and y directions.
We use the same initial conditions for each numerical

simulation with an initially potential magnetic field constructed
by placing two fictitious opposite magnetic charges below the
photosphere. The positive and negative charges are respectively
placed at r 0, 1, 1( )=  - . The resulting potential field is

B r
r r

r r

r r

r r
q q , 5p 0 3 0 3

( )
∣ ∣

( )=
-
-

-
-
-

+

+

-

-

where q 00 ( )> is the strength of the two magnetic charges. For
all simulations, we use q 10 = . The corresponding magnetic
field is displayed in Figure 1. The initial plasma density is set to

B c0 p
2

0 A
2( )r m= , where cA is the initially uniform Alfvén

speed.
The top and all side boundaries of the numerical domain are

open (further details on these boundary conditions are given in
Section 2.5 of Aulanier et al. 2005). Line-tied boundary
conditions are prescribed at the photospheric plane, or z = 0, to
build up twisted and sheared magnetic fields.

2.2. Photospheric Twisting Motions

The first type of photospheric driving is applied to twist the
initial potential magnetic configuration along the isocontours of
the photospheric vertical magnetic field, B z 0z ( )= . This
modifies the transverse components of the initial potential
field while preserving its photospheric flux distribution,
B z t0, 0z ( )= = . The expression of the twisting velocity field
is

u z u
y

0 , 6x 0( ) ( )y
= =

¶
¶

u z u
x

0 , 7y 0( ) ( )y
= = -

¶
¶

u z 0 0, 8z ( ) ( )= =

where u0 is a free parameter that controls the maximum speed
of the driving, and ψ is a normalized, time-dependent potential
(see, e.g., Amari et al. 1996; Török & Kliem 2003; Aulanier
et al. 2005). This potential depends on B z 0z ( )= such that

B z

B z

B z B z

B z

0

0
exp

0 0

0
. 9z

z

z z

z

2

max 2

2 max 2

tw
2 max 2

( )
( )

( ) ( )
( )

( )y
z

=
=

=

= - =

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

This twisting profile generates two vortices centered on
B z 0z

max ( ) = . The size of the vortices is controlled by the
free parameter twz .

Figure 1. Top: initial magnetic field configuration of the shearing and twisting
simulations. The synthetic magnetogram is represented at the z = 0 plane with
superposed 0.25; 0.50; 0.75[ ] isocontours of Bz (solid purple and dashed
cyan lines) and selected field lines (red). The green line shows the polarity
inversion line. Center: photospheric (z = 0) Bz and ux profiles in the y direction
for the twisting motions (see Section 2.2). Bottom: same but for the shearing
motions (see Section 2.3).
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All twisting profiles were applied with a maximum driving
speed u c t0.02 00 A ( )= = . Figure 1 shows the profiles of
u x y0,x ( )= for all four cases considered in our study, referred
to as T 1; 2; 3; 4{ }. The corresponding parameters are listed in
Table 1. The left panels of Figure 2 display the 3D distribution
of the magnetic field for T3.

While the twisting boundary driving analytically preserves
the initial distribution of the photospheric vertical magnetic
field, small numerical errors eventually deform it on the long
run. To ensure that Bz is preserved in time for the twisting
simulations, we numerically reset B z t0,z ( )= to
B z t0, 0z ( )= = at each time step in the course of the runs.

2.3. Photospheric Shearing Motions

We consider two types of photospheric shearing motions
along the x direction, u z u0 , 0, 0x( ) ( )= = . The first is
centered on the strongest magnetic field of both photospheric
magnetic polarities. The second is confined to the weak field
surrounding the PIL to primarily shear it (e.g., similarly to
Antiochos et al. 1994).

The first type of shearing motions (curves S 1; 2; 3; 4{ } in
Figure 1) is given by

u z u a
y y

y y

0 exp

exp , 10

x 0 0
0

2

sh
2

0
2

sh
2

( )
( )

( )
( )

z

z

= = -
-

- -
+

⎡
⎣
⎢⎢

⎛
⎝
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⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

where shz controls the width of the shearing, y0 corresponds to
the y-position of the maximum velocity (shearing center), and
a0 is a constant used for the normalization of the Gaussian-
profile. The resulting shearing is invariant along the x direction.

The second type of shearing motions (curves SP 1; 2{ } in
Figure 1) is given by

u z u a
y y

y y
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2
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for y y1∣ ∣  , and
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for y y1∣ ∣  . Choosing sh1 sh2z z¹ allows one to have a broader
sheared region either for y y1∣ ∣ < or y y1∣ ∣ > . The parameter y2
is computed to ensure the continuity of the shearing profile at
y y1∣ ∣ = , where u y y z u, 0x 1 0(∣ ∣ )= = = .
In this paper, we consider four shearing profiles for the first

model, referred to as S 1; 2; 3; 4{ }, and two shearing profiles
for the second model, referred to as SP1 and SP2. The
corresponding parameters are listed in Table 1.
As for the twisting simulations, all shearing profiles were

applied with a maximum driving speed u c t0.02 00 A ( )= = to
ensure a quasi-force-free evolution of the magnetic field. The
applied profiles are displayed in Figure 1. The middle and left
panels of Figure 2 display the 3D distributions of the magnetic
field for S2 and SP2, respectively.

2.4. Ramp Function

We apply all photospheric line-tied motions using a ramp
function to smoothly bring the system from rest to a constant-
velocity photospheric driving such that

u ux y z t t x y z, , 0, , , 0 , 13( ) ( ) ( ) ( )g= = =

where u x y z, , 0( )= is defined in Sections 2.2 and 2.3. The
ramp function, t( )g , is given by

t
t t

t

1

2
tanh

2 1

2
, 14

m

hw

( )( ) ( )g =
-

+
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where tm corresponds to the time at which the middle of the
ramp function is reached, and thw corresponds to the half-width
of the ramp time. In our runs, we fix t t15m A= and t t5hw A= .
With these settings, the photospheric driving starts after 10»
Alfvén times, allowing the system to reach a good numerical
equilibrium before the acceleration begins. The constant-
velocity photospheric driving is reached after 20» Alfvén
times.

3. PHOTOSPHERIC CURRENTS INDUCED BY TWISTING
MOTIONS

In cylindrical geometry, any twisting motion based on a twist
function that falls to zero at a finite radial distance should
generate a twisted flux tube formed of a core of direct currents,
fully surrounded by a shell of return currents that exactly
neutralizes the direct currents (see Appendix A).
The transposition of these results to a 3D geometry has often

been used to argue that compact photospheric twisting motions
should lead to the generation of fully neutralized currents (e.g.,
Melrose 1991; Parker 1996). However, such a transposition
disregards the fact that a 3D magnetic flux tube may not
systematically have a cylindrical analog. It is therefore not
obvious that the properties of electric currents expected from a
simplified, cylindrical geometry may still hold in a more
complex 3D one.

Table 1
Values of the Parameters for the Velocity Profiles

Run twz shz sh1z sh2z y0 y1 y2

T1 0.1 L L L 1 L L
T2 0.5 L L L 1 L L
T3 1 L L L 1 L L
T4 5 L L L 1 L L
S1 L 0.17 L L 1 L L
S2 L 0.32 L L 1 L L
S3 L 0.55 L L 1 L L
S4 L 0.77 L L 1 L L
SP1 L L 0.24 0.24 L 0.5 0.5
SP2 L L 0.24 0.63 L 0.5 0.3

Note. All values are in non-dimensional units (normalized by half the distance
between the two photospheric magnetic polarities).
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To address this issue, we analyze the electric currents
generated by compact, photospheric twisting motions (see
Section 2.2).

3.1. Photospheric Distribution of Vertical Currents

Figure 3 displays the photospheric vertical current density, jz,
for the twisting runs, a few Alfvén times before each numerical
simulation terminated (due to the development of a numerical
instability caused by very sharp gradients). Each twisting run
induces the generation of a core of negative-direct currents
surrounded by a shell of positive-return currents, just as in
cylindrical geometry. As reported by Török & Kliem (2003)
and Delannée et al. (2008) for similar models, we find that the
direct currents are overall stronger and more compact than the
return currents. In addition, we notice that the distribution of
currents always exhibits the same type of strong azimuthal
asymmetry (except for T1) that does not occur in cylindrical
geometry.

This generic property was already explained by Aulanier
et al. (2005) and Titov et al. (2008), and is typical of the 3D
loop geometries analyzed in this paper. This asymmetry is an
effect of the field line length resulting from the flux tube
curvature. In cylindrical geometry r z, ,( )q , the equations of
magnetic field lines and electric current density lead to

B
r

l
B , 15z ( )=

F
q

Figure 2. Top (top row) and 3D (bottom row) views of the magnetic field generated by the photospheric line-tied motions. Left: twist case T3 (Equations (6)–(9)).
Center: shear case S2 (Equation (10)). Right: shear case SP2 (Equations (11) and (12)). Current-carrying magnetic field lines are in color while potential field lines are
in black.

Figure 3. Photospheric (z = 0) current maps, jz, at the end of each simulation
for the symmetric twisting of two opposite magnetic polarities (Section 2.2),
for T 1; 2; 3; 4{ }. White and black coloring display positive and negative
currents, respectively. Values are saturated at ±1.5. The solid purple and
dashed cyan lines represent ±0.25 isocontours of Bz.
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j
r

rB

r

B

r

B

l

1
, 16z

z ( )=
¶
¶

µ µ
Fq q

where Φ and l are the field-line twist and length, respectively.
For a given Bz isocontour Φ is fixed. It then follows that shorter
field lines (i.e., smaller l) possess a stronger electric current
density (Equation (16)). For our 3D curved flux tube, the same
amount of twist, Φ, is transferred to each field line of any given
isocontour of Bz. The previous considerations thus imply that
stronger currents develop at the footpoints of the shortest field
lines of any Bz isocontour. This creates an asymmetry that is
amplified by the faster expansion of the larger field lines. The
advection of this asymmetry by the photospheric motions is
responsible for the swirling pattern exhibited by the electric
current distribution. This effect is extremely weak for T1
because the twisting vortices are so narrow that the twisted field
lines have a very similar length.

Among several differences between each simulation, one is
the extension of the currents close to the PIL. In particular, for
the cases T 1; 2{ }, the twisting vortices are so narrow that the
distribution of current is mainly localized well inside the
isocontour B 0.25z∣ ∣ = . On the contrary, for T 3; 4{ }, the
vortices are so broad that the distribution of current extends to
the PIL.

3.2. Evolution of the Total Direct and Return Currents

We now analyze the curves of integrated currents by
computing

I j d , 17z
X

y
z
X

0
( )

ò=

where X refers to the total direct or return current within the
positive magnetic polarity (i.e., y 0 ). Because the direct/
return currents are negative/positive, we compute the total
direct/return current by extracting the negative/positive
current density in the positive magnetic polarity.

The temporal evolution of the integrated direct and return
currents is presented in the top panel of Figure 4. Due to its
small vortex size, the T1 case shows the development of only
weak direct and return currents. For the three other cases, the
vortices are broader, and stronger direct and return currents
develop.

Figure 4 shows that the absolute value of the integrated
direct current exhibits a monotonic rise (regardless of the
vortex width) and the strength of the direct current increases
with the width of the twisting vortex. The integrated return
current also presents a monotonic behavior. However, the
strength of the return current only increases with the vortex
width up to 0.5tw z .

Increasing the vortex width builds up twist in a larger
volume and generates a higher direct current. The return current
is affected in a more complex manner because the boundary
between the direct and return currents is pushed closer to the
PIL. Away from the PIL, increasing the vortex also implies that
longer magnetic field lines are being twisted. As discussed by
Aulanier et al. (2005), the resulting fast expansion of these field
lines limits their current density.

We therefore conjecture that the increase of total electric
current ( I Iz z

direct return∣ ∣ ∣ ∣+ ) with the vortex size is caused by a
complex competition of three mechanisms: (1) an increase due
to the transfer of magnetic twist in a broader region, (2) a

saturation/decrease caused by the approach of the line of
current reversal to the PIL, and (3) a saturation/decrease
induced by the fast expansion of the magnetic field lines.

3.3. Evolution of the Neutralization Ratio

In order to quantify the neutralization of electric currents
generated by photospheric line-tied motions, we define the
neutralization ratio, neut. , as

I

I
, 18z

z
neut.

return

direct
( ) =

where Iz
direct and Iz

return are computed from Equation (17). The
neutralization ratio is 1 for fully neutralized currents and 0 for a
magnetic field solely containing direct currents.
The bottom panel of Figure 4 shows the temporal evolution

of the neutralization ratio for the twisting runs. Our goal is to
analyze the neutralization of currents for different spatial
profiles of photospheric line-tied motions. In the following, we
therefore restrict our analysis to the period during which the
system evolves in response to a stationary boundary driving,
i.e., for t t20 A . A brief discussion of the results for the
transition phase, t t0; 20 A[ ]Î , is nonetheless provided in
Appendix C.
We find that the electric currents remain fully neutralized

( 1neut. = ) during the run with the narrowest vortices (T1), and
nearly neutralized ( 0.98neut. » ) for the T2 run. On the
contrary, the two runs with the larger vortices, T 3; 4{ }, exhibit
a strong departure from neutralization. This confirms the earlier

Figure 4. Evolution of the electric current, Iz, at z = 0 in the positive polarity
for the photospheric twisting motions. Top: negative-direct (Iz

direct) and
positive-return (Iz

return) currents (respectively displayed in solid and dashed
lines). Bottom: neutralization ratio.

6

The Astrophysical Journal, 810:17 (14pp), 2015 September 1 Dalmasse et al.



results of Török & Kliem (2003) that were obtained with
different numerical settings.

Figure 4 further indicates that the constant boundary driving
phase is associated with a slow and weak decrease of the
neutralization ratio for run T3. On the contrary, the neutraliza-
tion ratio of run T4 presents a weak increase followed by a
saturation. Such behaviors result from a non-trivial combina-
tion of the increase of currents with magnetic twist and the
saturation of currents caused by the fast expansion of the
largest field lines, as discussed in Section 3.2. Note that for T4,
two additional effects are likely involved in the evolution of the
neutralization ratio: (1) the twisted flux tube starts to leave the
numerical domain (as suggested by the opening of some field
lines, not shown here), and (2) the flux tube enters a super-
exponential growth phase (see the equilibrium curves in Török
& Kliem 2003; Aulanier et al. 2005), leading to a fast
expansion of the more twisted field lines compared with the
less twisted ones, i.e., for the direct currents. This limits the
growth of the direct current more efficiently than that of the
return current, which could explain the observed weak increase
of the neutralization ratio.

In contrast to cylindrical symmetry (Appendix A), Figure 4
shows that twist profiles do not systematically generate
neutralized currents in fully 3D twisted flux tubes. Hence, the
condition for current neutralization derived in 2.5D geometry
cannot be directly transposed to a fully 3D loop geometry such
as the one considered in this paper. Indeed, we will show in
Section 5 that (1) the condition for current neutralization in 3D
is more subtle than in 2.5D, and (2) net currents are associated
with 3D coronal fields that do not have any analog in 2.5D.

4. PHOTOSPHERIC CURRENTS INDUCED BY
SHEARING MOTIONS

In this section, we study the electric currents generated by
compact photospheric shearing motions (see Section 2.3).

4.1. Photospheric Distribution of Vertical Currents

Figure 5 displays the photospheric vertical current density, jz,
for the shearing runs. We find that each run presents both
negative-direct and positive-return, force-free currents. Their
signs are identified from the sign of the magnetic helicity
transferred to the system. In particular, the chosen shearing
motions produce negative magnetic helicity, and hence
negative-direct currents.

For almost all of the simulations, the direct and return
currents have a similar spatial distribution with similar
intensities. Two cases, however, do not display the same
pattern: S3 and S4 mostly possess direct currents. For these two
runs, the return currents are much weaker than the direct ones
(e.g., 7» times weaker for S3).

The return currents are generally expected for localized
shearing motions. This is qualitatively described in Figure 6
with the right-hand rule relating the local magnetic shear to the
direction of the electric current. Localized shearing motions
generate a curl of the magnetic field that changes sign at the
line of the strongest magnetic shear. However, contrary to the
drawing of Melrose (1991), the line of current reversal may not
systematically correspond to that of the maximum velocity. For
instance, the maximum photospheric velocity occurs at
y y 10∣ ∣ = = for the S 1; 2; 3; 4{ } runs. Nevertheless, only
S 1; 2{ } possess a current reversal at y y0∣ ∣ » at the

photosphere, while it occurs at y 0.5∣ ∣  for S3 and at the
PIL for S4. This is because the current distribution depends not
only on the shearing velocity profile but also on the 3D shape
of magnetic field lines.

Figure 5. Photospheric current maps as in Figure 3, for the symmetric shearing
of two opposite magnetic polarities (Section 2.3). Top/middle: shearing
centered on Bz

max for S 1; 2; 3; 4{ }. Bottom: shearing centered on the weak
field surrounding the PIL for cases SP 1; 2{ }. The color coding is the same as in
Figure 3 with the saturation at ±0.5.

Figure 6. Examples of sheared magnetic field lines and current direction
generated by photospheric shearing motions for the case S2. The thick blue
(respectively green) field line is anchored within the direct (respectively return)
current. The thick black field line is anchored at the line of current reversal (thin
yellow lines). The orange arrows and hands show the direction of the current
density, j, on both sides of the line of current reversal, as inferred from the
right-hand rule. The arrows on the field lines indicate the magnetic field
direction. The color coding and saturation are the same as in Figure 5.
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As for the twisting runs, we find that one significant
difference between each shearing simulation is the extension of
the currents close to the PIL. In particular, the shearing regions
of S1 and S2 are so narrow that their distributions of currents
are strongly localized (in the y direction) within the isocontour
B 0.25z∣ ∣ = . On the contrary, the shearing regions are so broad
for S3 and S4 that the distributions of currents extend to the
PIL. Finally, both the shearing profile and electric currents
extend to the PIL for SP1 and SP2.

4.2. Evolution of the Total Direct and Return Currents

The top panel of Figure 7 presents the temporal evolution of
the integrated direct and return currents in the positive
magnetic polarity. All direct current curves show a similar
monotonic rise in absolute value, with a higher intensity for
broader shearing regions. In contrast, the evolution of the return
currents varies with the width of the shearing region. For
S 1; 2{ }, the return current monotonically increases with time.
For S3, the intensity of the return current increases and then
smoothly decreases, while for SP 1; 2{ } the simulation
terminated too early to draw conclusions. The S4 run does
not show any return current because the line of current reversal
occurs at the PIL (see Section 4.1).

As shown in Appendix D, the applied shearing motions can
generate two evolutionary phases for the current density of
magnetic field lines: (1) a first phase of increase with magnetic
shear, and (2) a phase of decrease caused by a fast elongation of
the field lines. For similar shearing velocities, the shortest field
lines should be the first to experience (2), because this effect is
more pronounced for field lines that align more rapidly with the
PIL (as explained in Appendix D). For all shearing simulations,

the return currents are associated with the shortest magnetic
field lines. We thus argue that it is the late elongation of these
field lines that is responsible for the decrease of return current
observed for S3.
Finally, we note that increasing sh2z for the second shearing

profile (i.e., SP2) allows one to modify the shear profile of the
field lines associated with the direct current. In particular, the
direct current is distributed over a broader region. However, the
amount of direct and return current is preserved.

4.3. Evolution of the Neutralization Ratio

The bottom panel of Figure 7 displays the temporal
evolution of the neutralization ratio for each shearing run.
For the reasons explained in Section 3.3, we focus our analysis
on the neutralization during the constant photospheric driving
phase (i.e., t t20 A ).
The currents remain fully neutralized ( 1neut. = ) for S1 and

S2. On the contrary, the two runs with the broadest shearing
widths (S 3; 4{ }) exhibit a strong departure from neutralization.
For S4, the neutralization ratio vanishes as a consequence of
the absence of return current in the simulation (because the line
of current reversal occurs at the PIL; see. Section 4.1). For
SP 1; 2{ }, the shearing motions applied close to the PIL also
generate a strong net current. Both runs lead to the same degree
of current neutralization.
We notice that the curves of the neutralization ratio of the S3

and SP 1; 2{ } runs all present a comparable evolution. They all
show a continuous decrease. Such a decrease indicates that the
rate of current build-up is stronger for the direct current than for
the return current. As previously mentioned (Section 4.2), the
effect of field line elongation more strongly affects the shortest
field lines. One would then expect a lower rate of current build-
up for the return current than for the direct one. This could then
explain the continuous decrease of the neutralization ratio
observed for the SP 1; 2{ } and S3 runs.
Finally, the decreasing behavior of the neutralization ratio of

S3 and SP 1; 2{ } indicates that in a system driven by stationary
shearing motions, the neutralization state of the system is not
solely determined by the spatial properties of the shearing
motions, but also depends on the amount of accumulated shear
and inflation.

5. DISCUSSION

In this section, we first examine the development of weak
compression currents in the ambient field of our simulations.
We then discuss our results in the framework of the sheared
PIL/net current relationship and compare them with the
conjectures of Melrose (1991) and Parker (1996).

5.1. Compression Currents in the Ambient Field

When analyzing the distribution of currents of our 3D
current-carrying fields at high saturation levels, we find that
some very weak currents develop in the ambient field rooted in
areas where the photospheric flows vanish (as pointed by the
red arrows in Figure 8). These currents are typically 2–3 orders
of magnitude smaller than the currents directly generated by the
photospheric flows. They appear in the very close vicinity of
the twisted/sheared fields and very rapidly decrease away from
them. We find that these currents are induced by the local
compression of the ambient field caused by the inflation of the
twisted/sheared field in response to the photospheric flows.

Figure 7. Evolution of electric current as in Figure 4 for the photospheric
shearing motions.
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Such a compression of the ambient field cannot be reproduced
in 2.5D geometry because the imposed symmetry forces that
field to remain as a potential field.

We also note that the compression currents do not form a
shell of a single sign around the return current for the twisting
cases (see. T3 in Figure 8). On the contrary, we find two
regions of enhanced currents oriented in two specific directions
(as indicated by the dashed red lines in Figure 8). This is
caused by the development of a kink of the flux tube axis. The
direction of the L-dashed red line corresponds to the orientation
of the kink of the flux tube axis (as shown in Figure 2 top left
and more precisely by the yellow field line in Figure 5 of
Aulanier et al. 2005). The kink of the axis causes a preferential
compression of the ambient field in its direction and induces a
magnetic depression in the direction of the R-dashed red line.

5.2. The Sheared-PIL/Net Current Relationship

The numerical experiments of Sections 3 and 4 show that
photospheric line-tied motions can generate 3D force-free
magnetic fields with different amounts of current neutraliza-
tion. We further analyzed and compared the simulations
presented in this paper to identify the origin of these various
degrees of neutralization. The results are summarized in
Figure 9, which displays the photospheric transverse magnetic
field at the PIL for current-neutralized and net current cases.
We find that all current-neutralized magnetic fields possess a
PIL fully embedded in a potential magnetic field (Figure 9 left
column). On the contrary, we observe that (1) a net current
develops simultaneously with magnetic shear at the PIL, and
(2) a stronger net current is induced for simulations generating
a stronger magnetic shear at the PIL (see Figure 9 right
column). In agreement with Török & Kliem (2003), and
extending their results to pure shearing motions, we thus find
that a net current solely develops when magnetic shear is built
up at the PIL. These results are also consistent with
observational studies (e.g., Ravindra et al. 2011; Georgoulis
et al. 2012) and the investigation of flux emergence in Török

et al. (2014). In the following, we address this relationship in a
general form.
We consider a bipolar potential magnetic field, such as the

initial field, used in our numerical simulations (Figure 10). We
then consider a photospheric velocity field, u, that builds up
electric currents at z = 0 inside of a surface, Su, of the positive
magnetic polarity5; u vanishes outside of Su. Finally, we
consider a closed curve,  , such that (i)  includes the PIL of

Figure 8. Saturated photospheric jz (gray shading) showing the currents
associated with the compression of the ambient field caused by the inflation of
the twisted (left) and sheared (right) magnetic fields. The saturation value is
2.4 10 3´ - for T3 and 5 10 3´ - for S1 (compared with Figures 3 and 5 where
the saturation value is two orders of magnitude higher). The solid purple and
cyan-dashed lines are B 0.25z∣ ∣ = -isocontours.

Figure 9. Sheared-PIL/net current relationship illustrated for two current-
neutralized (T1 and S1; left column) and two net current (T4 and S4; right
column) simulations. The photospheric transverse magnetic field at the PIL,
B PILt ( ) (green arrows), is plotted over the photospheric Bz (gray shading). The
solid purple and cyan-dashed lines are B 0.25z∣ ∣ = -isocontours.

Figure 10. Schematic used for the mathematical demonstration of the sheared
PIL/net current relationship. The map shows a photospheric magnetogram of
the initial potential magnetic field used in our line-tied simulations. The
surfaces S Su and the contour  are defined in Section 5.2. The thick, black/
white, dashed line highlights the part of  that corresponds to the PIL (green
solid line). The solid purple and dashed cyan, lines are B 0.25z =  -isocontours
of the magnetic field.

5 The corresponding definition can also be done in the negative magnetic
polarity, but this is not needed because of j 0· = and the current is
transferred to closed magnetic field lines. We therefore keep our analysis
simpler by focusing on the positive magnetic polarity, as we did with the
analysis of our numerical simulations.
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the bipolar AR, and (ii) the surface, S, enclosed by  is much
larger than the surface Su where electric currents are generated
by the photospheric motions. These two choices ensure that all
the currents that are transferred to the magnetic field are fully
enclosed by  .

The applied photospheric velocity field generates a current-
carrying component, Bj, in the bipolar magnetic field. The total
magnetic field, B, can be decomposed as the sum of its
potential, Bp, and current-carrying, Bj, components (e.g.,
Valori et al. 2013), such that

B B B , 19jp ( )= +

B B j. 20j 0 ( )  m´ = ´ =

In fact, Bj can be further decomposed into two components

B B B . 21u u
j j j

0 0 ( )= +¹ =

Bu
j

0¹ corresponds to the main current-carrying field and it only

has non-zero values in the magnetic field connected to Su. Bu
j

0=

is a current-carrying field generated by the compression of the
potential field resulting from the inflation of the main current-
carrying field. This component is non-zero only in the ambient
magnetic field, i.e., the magnetic field not connected to Su. Its
strength is on average two orders of magnitude smaller than the
strength of the main current-carrying field, Bu

j
0¹ , and decreases

very rapidly away from the latter (see Section 5.1). For this
reason and because the contour  is chosen such that S is much
larger than Su, we can neglect Bu

j
0= in the following.

Applying Ampère’s law, it then follows that the total electric
current enclosed by  is
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where ld is the line element along  . Equation (22) can be
further decomposed as the sum of two contributions: one along
the part of  corresponding to the PIL, and a second
corresponding to the remaining of  (i.e., PIL- ). This leads to
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The intersection of  with Su—when it exists—is limited to the
PIL, and Bu

j
0¹ vanishes outside of Su. It then follows that the

second term of Equation (23) vanishes. At any fixed time, the
total current enclosed by  is therefore

B dlI
1

. 24u
j

0 PIL

0 · ( )òm
» ¹

When the PIL is embedded within a potential magnetic field,
i.e., Su is never in contact with the PIL, then Bu

j
0¹ vanishes all

along the PIL. The total electric current, I, thus vanishes as
well, which implies that the currents are neutralized. On the
contrary, Bu

j
0¹ does not vanish for a magnetically sheared PIL.

The current-carrying magnetic field will then contain a net
electric current, I 0¹ (unless the integrand in Equation (24)
changes sign such that the oppositely directed contributions
cancel exactly, which could happen for the very rare cases in
which ARs contain opposite twists/shear). We thus conclude

that force-free net currents are inevitably related to magneti-
cally sheared PILs.
The above derivation is supported by the results of the SP2

run as compared with SP1. Indeed, both possess the same
shearing profile in the field lines associated with the return
current. This means that both simulations have approximately
the same magnetic shear profile along the PIL (neglecting the
effect of different distant direct currents). From Equation (24),
it follows that both are expected to have very similar net
current. This is what happens, as inferred in Figure 7 from the
curves of the direct current, the return current, and the
neutralization ratio of SP2 that match those of SP1.
Finally, we emphasize that the above relationship between

net currents and magnetically sheared PIL is significantly
different from the Lorentz-force-driven shear discussed by
Georgoulis et al. (2012). Indeed, in all of our zero-β MHD
simulations, there is no dynamical compression that could
generate a Lorentz force that would shear the PIL. On the
contrary, the magnetic shear along the PIL is caused by the
motions imposed in the photosphere, and this magnetic shear
generates a force-free net current.

5.3. Net Currents versus Neutralization Predictions

The possibility of generating coronal magnetic fields
carrying a net current is at variance with the conjectures of
Melrose (1991) and Parker (1996), who argued that twisted and
sheared coronal fields should be perfectly current-neutralized.
The main difference with our results stems from the fact that
both authors built a conjecture using 2.5D considerations,
which were then directly transposed to 3D geometry. The
cornerstone of their conjectures is that any 3D twisted/sheared
magnetic field embedded in a potential field or a field-free
environment can be equivalently described by a flux tube
connecting two parallel planes and set in the same (but 2.5D)
magnetic environment.
The above assumption is valid for any 3D flux tube whose

two photospheric magnetic polarities are fully separated either
by an ambient potential field or a field-free environment, i.e.,
when there is no magnetic shear at the PIL. This is the implicit
assumption of Melrose (1991), who limited his considerations
to the case of twisting and shearing motions not extending to
the PIL. The same assumption is also implicitly made by Parker
(1996) when using a cylindrical twisted flux tube of finite
radius as a model for an element of an AR magnetic field that is
fragmented in the photosphere. In such cases, a 2.5D analysis
shows that electric currents should be neutralized (see
Appendix A). This agrees with our 3D derivation of
Section 5.2, in which we demonstrated that full current
neutralization occurs when a PIL is fully embedded in a
potential field or field-free environment.
On the contrary, when a 3D flux tube has magnetic shear

along its PIL, the above cylindrical description of an AR is not
valid. Indeed, an electric current is then flowing along the PIL
where the two polarities are in contact. In that scenario the
cylindrical approximation of Melrose (1991) and Parker (1996)
is not relevant. As a consequence, the associated conclusion
that currents should be neutralized is not applicable. A fully 3D
analysis is then required to predict whether or not currents
should be neutralized. Such a 3D analysis actually shows that a
net current should be expected when magnetic shear is present
along the PIL of the 3D flux tube (see Section 5.2).
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6. CONCLUSIONS

In this study, we used 3D MHD numerical simulations to
analyze the properties of electric currents in line-tied coronal
fields generated by photospheric flows in bipolar ARs. We
showed that typical photospheric flows, such as twisting and
shearing motions, invariably produce both direct and return
currents in the line-tied coronal fields. We find that these
photospheric flows can create both neutralized and non-
neutralized currents.

Using Ampère’s law, we provided a physical origin to the
build up of force-free net currents in coronal magnetic fields.
They arise from the development of magnetic shear along PILs
(Section 5.2). This conclusion agrees with the independent
study of Török et al. (2014), who showed that magnetic flux
emergence can also produce a net coronal current that
simultaneously develops with magnetic shear at the PIL. Török
et al. (2014) and our study thus set a theoretical framework for
understanding the properties of electric currents in ARs. They
both show that, in general, net currents can be formed in the
corona from various, independent and/or combined processes:
e.g., magnetic flux emergence, photospheric flows, and by
extension, any mechanism that can generate magnetic shear
along a PIL.

Net currents in ARs can therefore develop in a large variety
of cases. On the contrary, the production of perfectly current-
neutralized magnetic fields in the solar atmosphere is a special
case that requires a rather uncommon condition: a main PIL
without magnetic shear. This is unlikely for both emerging and
evolved/decaying ARs. Indeed, several observational and
numerical studies show that newly emerged ARs generally
possess a strongly sheared PIL (e.g., Manchester et al. 2004;
Canou et al. 2009; Georgoulis et al. 2012; Toriumi et al. 2013;
Poisson et al. 2015). Next, evolved/decaying ARs are often
associated with the presence of Hα filaments, which are cold
dense material supported in highly sheared/twisted magnetic
fields lying above PILs (e.g., van Ballegooijen &Martens 1989;
Aulanier & Demoulin 1998; Gibson et al. 2004; Schmieder
et al. 2006; Jing et al. 2010; Mackay et al. 2010; Xia
et al. 2014).

Furthermore, starting from a configuration with an unsheared
PIL, it will remain so if the shear component of photospheric
flows is not extending to the PIL. This is also unlikely since the
opposite is typically observed in ARs (e.g., Vemareddy
et al. 2012; Wang et al. 2012; Guo et al. 2013; Liu
et al. 2013). In fact, several observations suggest shearing
profiles that would be analogous to our strongly non-
neutralized run S4 (as inferred from the photospheric motions
of magnetic polarities; e.g., Su et al. 2007; Sun et al. 2012).
Finally, the absence of significant shear is more likely to hold
for evolved ARs possessing isolated magnetic polarities (i.e.,
magnetic polarities far away from each other).

The two main sources of AR currents, emergence and
horizontal photospheric motions, would thus be expected to
primarily produce net coronal currents. Nevertheless, a few
observational studies seem to indicate that ARs with neutra-
lized currents may be as numerous as ARs with a net
current (e.g., Wilkinson et al. 1992; Wheatland 2000). If we
consider a typical magnetic field of B 2000 Gmax = for newly
emerged ARs, and 15 Mm for one spatial unit of our non-
dimensionalized simulations, the strength of the net current in
our strongly non-neutralized magnetic fields can reach

0.7 4 10 A12~ - ´ . If the magnetic field is scaled to

B 200 Gmax = for decaying ARs, the strength of the net
current ranges between 0.7 4 10 A11~ - ´ . Since the actual
measurement precision is about 10 A11 , it then remains to be
proved that current-neutralized ARs are truly current-neutra-
lized. This requires a systematic analysis of both the current
neutralization and the magnetic shear at the PIL for any studied
AR, which was not done in Wilkinson et al. (1992) and
Wheatland (2000). Such dedicated studies could then be used
to further test the conclusions derived in the present paper.
Finally, even though our MHD simulations systematically

report the presence of return currents, net currents in coronal
magnetic fields do exist. Therefore, eruption models based on
magnetic configurations possessing net currents (e.g., van Tend
& Kuperus 1978; Heyvaerts et al. 1982; Lin et al. 1998; Titov
& Démoulin 1999; Kliem & Török 2006; Démoulin &
Aulanier 2010) are a simplified but valid description of pre-
eruptive magnetic fields in ARs. Our results that relate net
coronal currents to magnetically sheared PILs then naturally
explain the observational conclusions of Falconer (2001) and
Falconer et al. (2002), which state that ARs with a sheared PIL
are more CME-prolific. That being said, one must bear in mind
that the aforementioned analytical models, based on a net
coronal current, do not possess any return current. Yet, return
currents exist in MHD simulations of CMEs (e.g., Török &
Kliem 2003; Delannée et al. 2008; Aulanier et al. 2012).
Moreover, in some cases the return current can have the same
strength as the direct current, which may inhibit the eruption
(e.g., Forbes 2010). Further studies are thus required to
quantify the role of these return currents for the trigger and
development of solar flares and CMEs, e.g., using MHD
simulations.
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APPENDIX A
ELECTRIC CURRENTS IN CYLINDRICAL GEOMETRY

Let us consider a twisted magnetic flux tube in cylindrical
geometry. The cylindrical coordinates r, θ, and z, respectively,
describe the distance to the axis of the flux tube, the angle
around its axis, and the position along its axis. Using the
integrated form of Ampère’s law, the total current, I, flowing
across a disk of radius r, is

f I r r B r2 , 250 ( ) ( ) ( )m p= q

where f (equals 1+ or 1- ) is included so that I r( ) is a positive
function in the flux rope core where the direct current is
located. In the flux rope core, the current I is therefore a
growing function of r. The region of return current is located
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where I is a decreasing function of r, so for

rB

r
0. 26

( ) ( )
¶

¶
<

q

The existence of return currents is thus simply constrained by
the existence of r 0l > , such that

B r
C

r
r r, for , 27l( ) ( )< >q

where C is an integration constant. The region where Bq
decreases faster than r1 is the region of return current.

The flux rope current is fully neutralized if there is a finite
radius, rc, such that I r r 0c( )> = , i.e.,

B r r r0, for . 28c( ) ( )= >q

From Equation (25), it is straightforward to show that if a
twisted magnetic flux tube is confined (i.e., if it has a finite
radius R rc= ), then the total electric current carried by the flux
tube vanishes.

These conditions are valid regardless of the force-freeness of
the magnetic field.

APPENDIX B
SOLENOIDAL CONDITIONS WITH OHM

As mentioned in Section 2.1, the solenoidal condition for the
magnetic field is not numerically imposed in the code.
However, to show that it does not affect the evolution of the
magnetic field in our simulations, we compute the fraction of
non-conserved flux, or fractional flux, fi, within each cell, i, of

the mesh, such that
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where Xi∣ ∣ and Xi· are respectively the norm of X , and its
divergence, within the mesh-cell, i, of volume, vi, bounded by
the surface, si (e.g., Wheatland et al. 2000; Valori et al. 2013).
We compute the set of Bfi ( ) values for the twisted flux tube

simulation, T4. The corresponding probability density function
(PDF) and its statistics are displayed in Figure 11 and Table 2.
As can be seen, the PDF is well centered on zero. The two
bumps in the wings of the PDF are contributions from the
boundaries.
Both Figure 11 and Table 2 show a mean, a median, and a

standard deviation of fi, that are all smaller than 10 4~ - . This
means that the amount of non-conserved magnetic flux within
each mesh-cell is typically 104~ times weaker than the local
magnetic flux. Therefore, even though the solenoidal condition
is not numerically treated within the OHM code, the non-
conservation of magnetic flux remains very weak. These results
are representative of the set of numerical simulations performed
and presented in this paper. We thus conclude that the
solenoidal condition is well enough verified to ensure that the
very weak non-conservation of magnetic flux does not affect
the evolution of the system in each of our line-tied simulations.
We further compute the fractional flux for the electric current

density ( jfi ( )) to check that its divergence is indeed zero (as
one would expect from applying the divergence operator to
Ampèreʼs law). The associated PDF, and the statistics of the

Figure 11. PDF of the fractional flux, fi (Equation (30)), of the magnetic field (left) and of the electric current density (right), for the twisting simulation T4 at
t t60 A= . Top: linear scale. Bottom: log-scale.
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PDF, are displayed in Figure 11 and Table 2. As for the
magnetic field, j 0· = is well preserved in our line-tied
simulations.

APPENDIX C
NEUTRALIZATION RATIO: TRANSITION PHASE

The neutralization ratio curves of the partially current-
neutralized cases all present a transition phase between t = 0
and t t20 A» . This transition phase is distinguished by two
specific periods, t t0; 10 A[ ]= and t t10; 20 A[ ]= .

As mentioned Section 3.2, the direct/return currents are
computed by extracting the negative/positive current density at
the photospheric positive polarity. During the early evolution
of the system (when the driving is zero and/or extremely
weak), the computed total direct/return current, and hence
neutralization ratio, are all dominated by the noise. This noise
is essentially due to the presence of magneto-acoustic waves at
early times. While the initial potential field is analytically a
potential field and is at equilibrium, it is not numerically
because of the discretization. This well-known effect leads to
the generation of magneto-acoustic waves inducing compres-
sion of the magnetic field. Such a compression creates
transitory neutralized currents in each magnetic polarity of
the system because they are not associated with magnetic shear
build-up at the PIL. This is why the neutralization ratio is
initially well-defined and equal to 1 for all simulations. A
precise analysis shows us that the currents generated by the
photospheric motions progressively become dominant (i.e.,
their strength is ∼100 times larger than the noise) for t t10 A .
The transition from a system dominated by noise currents
toward photospherically generated currents is thus responsible
for the early evolution of the neutralization ratio, up to t10 A.

The second transition appears between t t10; 20 A[ ]= ,
which corresponds to the main acceleration period of the
temporal ramp function. This transition follows the evolution of
the temporal ramp function. Such a transition could be
produced by two competitive mechanisms: (1) non-force-free
effects due to the fast acceleration of the photospheric
velocities, and (2) the saturation of currents due to field line
length (as discussed in Sections 3.2 and 4.2).

APPENDIX D
RETURN CURRENT DECREASE IN SHEARING RUNS

Let us consider a magnetic field line at a time t. We define ρ
as the distance between its two photospheric footpoints. x0 and
y0 are the distance between both photospheric footpoints in the
x and y directions, respectively, such that

x sin 310 ( )r f=

y cos , 320 ( )r f=

where f is the angle between the field line footpoints and the
normal to the PIL at the photosphere. The variation of these
distances during an infinitesimal time, dt, is

dx d dsin cos 330 ( )r f r f f= +

dy d dcos sin . 340 ( )r f r f f= -

The photospheric motions being solely applied in the x
direction, it follows that dy 00 = . Combining with Equa-
tions (33) and (34), one obtains the following equations

d dxsin 350 ( )r f=

d dxcos . 360 ( )r f f=

Then, we define 10∣ ∣ ∣ ∣ f f= -  . Replacing in Equa-
tions (35) and (36) and expanding terms to a first order in ò, one
obtains

d dxsin cos 370 0 0( ) ( )r f f» +

d dxcos sin . 380 0 0( ) ( )r f f f» -

When the footpoints segment is close to the normal to the PIL,
00f = . It follows that d dx d dx0 0r r f» » . The bound-

ary driving essentially induces a rotation of the field line with
regard to the vertical direction. In other words, it shears the
magnetic field line, thus increasing its current density. On the
contrary, when the footpoints segment is almost aligned with
the PIL, 20f p= . Then, d dx d dx0 0r r f» » - . The
boundary driving essentially increases the distance between the
field line footpoints. Since this distance is related to the field
line length (larger footpoints distance implies larger field line),
it follows that the photospheric motions essentially increase the
length of the field line, hence reducing its current density (see
Equation (16); see also Aulanier et al. 2005).
We then conclude that the continuous shearing of each

magnetic field line can generate two evolutionary phases for
their current density: (1) a first phase of increase with magnetic
shear, and (2) a phase of decrease due to a fast elongation of the
field lines. The shortest magnetic field lines (i.e., with the
smallest y0) should be the first to be affected by the decrease of
the current due to their elongation because they align more
rapidly with the PIL. For a given x0, smaller values of y0 induce
larger values of t x ytan 0 0( )f = , and hence values of t( )f
closer to 2p (i.e., the value for which the field line is aligned
with the PIL).
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