

Magnetism Matters: Coronal Magnetometry Using Multiwavelength Polarimetry

Sarah Gibson

DOC-FM Team: Kevin Dalmasse, Ed De Luca, Giuliana de Toma, Yuhong Fan, Natasha Flyer, Duncan Mackay, Karen Meyer, Doug Nychka, Jenna Samra, Antonia Savcheva, Steve Tomczyk

cavity center

Why does the coronal magnetic field matter?

Controls the storage and release of magnetic energy, from Sun to Earth

If we ever want to **predict Bz at the Earth**, we need to be able to quantify the **global** coronal magnetic field

NASA

Outline

Boundary-driven models: strengths and limitations

Coronal polarimetry: observations

Forward modeling: multiwavelength

Current work: DOC-FM and synthetic test beds

Potential-field sourcesurface global model:

 Good first approximation of global field; no currents

Mackay & Yeates, 2012

Savcheva and van Ballegooijen, 2009

Global MHD model (LOS boundary field):

 Better solar-wind interface upper boundary; missing key currents Dey 257 (a)

Mackay & Yeates, 2012

Savcheva and van Ballegooijen, 2009

Global flux-transport magnetofrictional model

 Includes currents built up over time; simplified activeregion emergence

Mackay & Yeates, 2012

Savcheva and van Ballegooijen, 2009

Prodictiva Science, Inc.

Non-linear force-free extrapolations (from vector boundary field)

 Constrains currents as well as field; results sensitive to measurement uncertainties, departures from force-free

Mackay & Yeates, 2012

Savcheva and van Ballegooijen, 2009

Non-linear force-free extrapolations with coronal constraints

 Information from coronal loops constrains currents; so far not global

Mackay & Yeates, 2012

Savcheva and van Ballegooijen, 2009

But couldn't we measure the magnetic field in the corona itself?

Coronal polarimety

Contours of B_{los}: 4, 2, 0, -2 G

Tomczyk et al. 2008

Lin et al., 2004

Infrared Stokes polarimetry (Zeeman and Saturated Hanle):

Circular polarization ~ B_{los}
Linear polarization: B_{pos} direction

 $\begin{array}{c} y = m \left(\frac{y + w + 2}{2} + \frac{y + 1}{2} + \frac{y + 1}{2$

Lin et al., 2004

Contours of B

MHD waves - IR and EUV:

Phase speed ~ |B|

van Doorsselaere, et al, 2008

Contours of B

Radio gyroresonance:

Isogauss surface: **|B|** scales with frequency

Lin et al., 2004

Contours of B

UV unsaturated Hanle:

 linear polarization modified (reduced, rotated) by magnetic fields

van Doorsselaere, et al, 2008

Multiwavelength data have complementarities:

 sensitive to different aspects of magnetic field (B_{los}, |B|, B_{POS}, POS direction)

> sensitive to either weak or strong field, appropriate for disk or limb

> > dependent (in different ways) on density, temperature, velocity

> > > dependent (in different ways) on field variation along LOS

So how do we use all this information?

First step in any inverse method: a well-defined forward problem

Given a distribution of plasma and magnetic fields along the line of sight, synthesizes observables from radio to SXR wavelengths.

Works with any analytic or numerical model, but automatically interfaces with PFSS extrapolation and PSI MAS MHD simulation (given date)

Given a distribution of plasma and magnetic fields along the line of sight, synthesizes observables from radio to SXR wavelengths.

Works with any analytic or numerical model, but automatically interfaces with PFSS extrapolation and PSI MAS MHD simulation (given date)

Given a distribution of plasma and magnetic fields along the line of sight, synthesizes observables from radio to SXR wavelengths.

Works with any analytic or numerical model, but automatically interfaces with PFSS extrapolation and PSI MAS MHD simulation (given date)

Given a distribution of plasma and magnetic fields along the line of sight, synthesizes observables from radio to SXR wavelengths.

Works with any analytic or numerical model, but automatically interfaces with PFSS extrapolation and PSI MAS MHD simulation (given date)

Given a distribution of plasma and magnetic fields along the line of sight, synthesizes observables from radio to SXR wavelengths.

Works with any analytic or numerical model, but automatically interfaces with PFSS extrapolation and PSI MAS MHD simulation (given date)

Given a distribution of plasma and magnetic fields along the line of sight, synthesizes observables from radio to SXR wavelengths.

Works with any analytic or numerical model, but automatically interfaces with PFSS extrapolation and PSI MAS MHD simulation (given date)

Given a distribution of plasma and magnetic fields along the line of sight, synthesizes observables from radio to SXR wavelengths.

Works with any analytic or numerical model, but automatically interfaces with PFSS extrapolation and PSI MAS MHD simulation (given date)

PSI MAS

Calculates Bremsstrahlung and gyro resonant emission (codes developed by S. White, T. Bastian)

Given a distribution of plasma and magnetic fields along the line of sight, synthesizes observables from radio to SXR wavelengths.

Works with any analytic or numerical model, but automatically interfaces with PFSS extrapolation and PSI MAS MHD simulation (given date)

Can include photon noise

5 minute integration of circular polarization for Fe XIII

Demonstrated diagnostic capability

Bak-Steslicka et al., 2013

Coronal cavities = magnetic flux ropes

Gibson, 2014

But how do we quantify the magnetic field?

MHD-model based approach to forward- fitting the global field (NCAR-CfA collaboration)

Solve for best fit parameters (location, orientation, strength, height of inserted flux ropes).

Add currents (flux-rope insertion) where synthetic observations don't match data

Initial guess global magnetic field

Generate synthetic observables

Optimization methods (HAO-CISL collaboration)

- Three-parameter fit for flux rope model, using I, Q, U, V synthetic data
- Sparse sampling of parameter space (Latin Hypercube); from n^p = 31³ to n = 31 points
- Chi-squared-type metric shown as interpolated surface of hypercube (left) vs. fully resolved metric surface (right)

Optimization methods (HAO-CISL collaboration)

Best fit parameter dispersion for 100 realizations of **31**-point sampling

Optimization methods (HAO-CISL collaboration)

Best fit parameter dispersion for 100 realizations of **93**-point sampling

Optimization methods (HAO-CISL collaboration)

Work in progress: further increasing hypercube size, analyzing errors, and optimizing choices of observables and related metrics

Future plans: Synthetic test-beds

Use to test diagnostic methods (like DOC-FM):

- 3D representations of plasma and magnetic field (ground truth)
- forward-modeled multi-wavelength observables

Quiescent filament flux rope with thermodynamics — Fan

Future plans: Synthetic test-beds

- Use to test diagnostic methods (like DOC-FM):
- 3D representations of plasma and magnetic field (ground truth)
- forward-modeled multi-wavelength observables

Global model — Mackay/Yeates (with plasma — Dalmasse)

Future plans: Synthetic test-beds

- Use to test diagnostic methods (like DOC-FM):
- 3D representations of plasma and magnetic field (ground truth)
- forward-modeled multi-wavelength observables

Active Region simulation — Rempel

Conclusions

Coronal magnetism matters for space weather

A range of observations yield clues to the coronal field; **Polarimetric data** provide the most direct information.

Actually **quantifying the 3D global field** from these data is not easy.

DOC-FM: MHD-model based approach to **forward-fitting the global field**

Synthetic testbeds allow us (and others!) to develop and refine an inversion framework, and in the process, to establish the best observations, models and optimization methods

Our ultimate goal: improved B_z forecast