

Sarah Gibson, Urszula Bak-Steslicka, Giuliana de Toma, Laurel Rachmeler, Mei Zhang

Sarah Gibson, Urszula Bak-Steslicka, Giuliana de Toma, Laurel Rachmeler, Mei Zhang

Sarah Gibson, Urszula Bak-Steslicka, Giuliana de Toma, Laurel Rachmeler, Mei Zhang

Sarah Gibson, Urszula Bak-Steslicka, Giuliana de Toma, Laurel Rachmeler, Mei Zhang

Coronal Multichannel Polarimeter (CoMP)

Coronal Multichannel Polarimeter (CoMP)

Daily (subject to weather), full-sun observations

Coronal Multichannel Polarimeter (CoMP)

Daily (subject to weather), full-sun observations

Primary polarimetric observable: L/I - fraction of linearly polarized light (L = sqrt(Q²+U²)

Coronal Multichannel Polarimeter (CoMP)

Daily (subject to weather), full-sun observations

Primary polarimetric observable: L/I - fraction of linearly polarized light $(L = sqrt(Q^2+U^2))$

Hanle effect: depolarization

- Strong L/I signal: B in plane of sky (POS)
- zero: **B** along line of sight (LOS)
- zero: Van Vleck angle (measured

between **B** and radial) = 54

Coronal Multichannel Polarimeter (CoMP)

Daily (subject to weather), full-sun observations

Primary polarimetric observable: L/I - fraction of linearly polarized light $(L = sqrt(Q^2+U^2))$

Hanle effect: depolarization

- Strong L/I signal: B in plane of sky (POS)
- zero: **B** along line of sight (LOS)
- zero: Van Vleck angle (measured between **B** and radial) = 54

Direction of linear polarization = direction of POS vector (but rotates 90 degrees at V. V. angle!)

Coronal Multichannel Polarimeter (CoMP)

Paily (subject to weather), **full-sun** observations

Lineoj

Primary polarimetric observable: L/I - fraction of linearly polarized light (L = sqrt(Q²+U²)

Sight ffect: depolarization in plane of sky (POS) 2 zero: b (LOS) 2 zero: Van Viel depolarization between B and radie

> Direction of linear polarization = direction of POS vector (but rotates 90 degrees at V. V. angle!)

Coronal Multichannel Polarimeter (CoMP)

Paily (subject to weather), **full-sun** observations

Line of

Cavity

Primary polarimetric observable: L/I - fraction of linearly polarized light (L = sqrt(Q²+U²)

Sight ffect: depolarization fin plane of sky (POS) 2 zero: b (LOS) 2 zero: Van Viel depolarization between B and radie

> Direction of linear polarization = direction of POS vector (but rotates 90 degrees at V. V. angle!)

Lagomorphs in CoMP linear polarization

EUV coronal cavities = CoMP lagomorphs

Gibson, 2014

Lagomorphs in CoMP linear polarization

EUV coronal cavities = CoMP lagomorphs

Gibson, 2014

Diagnostic of magnetic flux rope

Bak-Steslicka et al., 2013

Axial (LOS-aligned) field at cavity center — <u>above</u> prominence

Bak-Steslicka et al., 2014; 2016, Gibson, 2015; Fan, 2012

11.

Near-erupting cavity: index = ~1.4 at cavity center

SD0/AIA2010-06-12T07:00:06.61 1.3 Δ 1.2 (unsy sod-Z) 1.1 1.0 0.9 0.8-1.0-0.9 -0.8-0.7-0.6-0.5 (Y_pos Rsun)

Stable cavity: index = ~0.8 at cavity center

Near-erupting cavity: index = ~1.4 at cavity center

Stable cavity: index = ~0.8 at cavity center

Light-blue contour = index=1.4

de Toma — poster

Nonerupting "simple" cavities tend to have lower instability index than erupting cavities

de Toma — poster

Nonerupting "simple" cavities tend to have lower instability index than erupting cavities

HOWEVER!!!!

de Toma — poster

HOWEVER!!!!

Nonerupting "simple" cavities tend to have lower instability index than erupting cavities

3.0 3.0 non-eruptive coronal cavities eruptive coronal cavities 2.5 2.5 2.0 2.0 decay index decay index 1.5 1.5 1.0 1.0 B Bog 0.5 0.5 0.0 0.0 -0.5 -0.5 1.25 1.00 1.05 1.10 1.15 1.20 1.00 1.05 1.10 1.25 1.15 1.20 cavity center height (R_{SUN}) cavity center height (R_{SUN})

Trend does not hold for "complex" cavities

de Toma — poster

HOWEVER!!!!

Nonerupting "simple" cavities tend to have lower instability index than erupting cavities

3.0 3.0 non-eruptive coronal cavities eruptive coronal cavities 2.5 2.5 2.0 2.0 decay index decay index 1.5 1.5 1.0 1.0 B a 0.5 0.5 0.0 0.0 -0.5 -0.5 1.00 1.05 1.10 1.15 1.20 1.25 1.00 1.25 1.05 1.10 1.15 1.20 cavity center height (R_{SUN}) cavity center height (R_{SUN})

Trend does not hold for "complex" cavities

PSEUDOSTREAMERS

de Toma — poster

HOWEVER!!!!

Nonerupting "simple" cavities tend to have lower instability index than erupting cavities

eruptive coronal cavities non-eruptive coronal cavities 3.0 3.0 index at cavity center index at cavity center index at cavity center + 0.2 R index at cavity center + 0.2 R 2.5 2.5 2.0 2.0 Decay Index Decay Index 1.5 1.5 0.0 0.0 -0.5 -0.5 20 0 60 0 20 80 100 120 40 60

Trend does not hold for "complex" cavities

de Toma — poster

HOWEVER!!!!

Nonerupting "simple" cavities tend to have lower instability index than erupting cavities

eruptive coronal cavities non-eruptive coronal cavities 3.0 3.0 index at cavity center index at cavity center index at cavity center + 0.2 R index at cavity center + 0.2 R 2.5 2.5 2.0 2.0 Decay Index Decay Index 1.5 0.0 0.0 -0.5 -0.5 20 0 0 20 80 100 120 40 60

Trend does not hold for "complex" cavities

PSEUDOSTREAMERS

Pseudostreamers in CoMP linear polarization

Expected topology

Rachmeler et al 2014

Pseudostreamers in CoMP linear polarization

Rachmeler et al 2016

CoMP observations

L/I

Pseudostreamer

Pseudostreamers in CoMP linear polarization

Rachmeler et al 2016

CoMP observations

L/I

 Solar polar field reverses in response to flux emergence

 Coronal field may reverse before photospheric field

Zhang and Low, 2001

Solar polar field reverses in response to flux emergence

 Coronal field may reverse before photospheric field

Zhang and Low, 2001

Pseudostreamer at poles

Rachmeler — next talk

PSI MAS model Carr. rots, 2010 June 1 — 2014 December 31 south pole, +/- 5 degrees lat. average

PSI MAS model Carr. rots, 2010 June 1 — 2014 December 31 south pole, +/- 5 degrees lat. average

2015 April 18 Pseudostreamer

2015 April 18 Pseudostreamer

New diagnostic of expansion factor

New diagnostic of expansion factor

New diagnostic of expansion factor

Conclusions

CoMP linear polarization data diagnose flux ropes, pseudostreamers, and non-radially expanding fields

Useful for topological studies of all sorts, e.g. targeting solar eruptive stability and solar cycle evolution

New diagnostic of expansion factor: important for model validation and significant to solar-wind analyses

CoMP linear polarization data are a largelyuntapped resource, freely available at HAO/MLSO web site along with diagnostic tools (FORWARD)